Abstract

In the present work, a first-of-its-kind three-dimensional (3D) large-eddy simulation (LES) study is conducted to numerically investigate the combustion dynamics as well as aero-thermal phenomena in a full-scale nonpremixed hydrogen–air rotating detonation engine (RDE) (with a diverging-shaped lower-end wall), when integrated with nozzle guide vanes (NGV) acting as the turbine stator. The wall-modeled LES framework incorporates hydrogen–air detailed chemical kinetics and adaptive mesh refinement (AMR). A comparative analysis is carried out for two operating conditions with different fuel/air mass flow rates but global equivalence ratio of unity, and considering RDE configurations without and with stator. The LES model is validated against available experimental data for the low mass flux condition with respect to detonation wave speed/height, wave dynamics, and axial static pressure distribution. Numerical results indicate significant deflagrative combustion occurring in the fill region near the inner wall due to formation of recirculation zones in the injection near-field driven by the backward facing step. The leading detonation wave is found to be trailed by an azimuthal reflected-shock combustion (ARSC) wave, consistent with experimental observations, which consumes unburned vitiated reactants that leak through the main detonation wave. The main detonation wave characteristics, such as detonation wave speed/height and combustion efficiency, do not change appreciably with the presence of NGV. A novel combustion diagnostic technique based on chemical explosive mode analysis (CEMA) is employed to quantify the fraction of heat release occurring in the detonative mode versus deflagrative mode for the simulated conditions. The exit flow is found to be nearly fully subsonic and supersonic for the low and high mass flux conditions, respectively. Further analysis of the exit flow profiles shows that the presence of NGV renders the flow more axial and significantly impacts the exit Mach number and total pressure, while the total temperature shows negligible change. In addition, the low mass flux operating point, despite exhibiting more deflagrative losses within the combustor, yields overall lower pressure drop from plenum to exhaust, which is mainly attributed to lower pressure drop across the injectors. Lastly, the rotating detonation engine-nozzle guide vanes (RDE-NGV) configuration exhibits higher total pressure loss compared to rotating detonation engine (RDE) without stator across both the mass flux conditions. This study extends the state-of-the-art in numerical modeling of pressure gain combustion (PGC) systems by demonstrating high-fidelity 3D reacting LES of full-scale RDE-NGV systems relevant to RDE-turbine integration for stationary power generation.

References

1.
Wolanski
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
, pp.
125
158
.10.1016/j.proci.2012.10.005
2.
Raman
,
V.
,
Prakash
,
S.
, and
Gamba
,
M.
,
2023
, “
Non-Idealities in Rotating Detonation Engines
,”
Annu. Rev. Fluid Mech.
,
55
(
1
), pp.
639
674
.10.1146/annurev-fluid-120720-032612
3.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
4.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2006
, “
Continuous Spin Detonations
,”
J. Propul. Power
,
22
(
6
), pp.
1204
1216
.10.2514/1.17656
5.
Rankin
,
B.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
, pp.
12
22
.10.1016/j.combustflame.2016.09.020
6.
Cho
,
K. Y.
,
Codoni
,
J. R.
,
Rankin
,
B. A.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2016
, “
High-Repetition-Rate Chemiluminescence Imaging of a Rotating Detonation Engine
,”
AIAA
Paper No. 2016-1648.10.2514/6.2016-1648
7.
Fugger
,
C. A.
,
Cho
,
K. Y.
,
Hoke
,
J. L.
,
Gomez
,
M. G.
,
Meyer
,
T.
,
Schumaker
,
S. A.
, and
Caswell
,
A. W.
,
2020
, “
Detonation Dynamics Visualization From Megahertz Imaging
,”
AIAA
Paper No. 2020-0441.10.2514/6.2020-0441
8.
Athmanathan
,
V.
,
Braun
,
J.
,
Ayers
,
Z. M.
,
Fugger
,
C. A.
,
Webb
,
A. M.
,
Slipchenko
,
M. N.
,
Paniagua
,
G.
,
Roy
,
S.
, and
Meyer
,
T. R.
,
2022
, “
On the Effects of Reactant Stratification and Wall Curvature in Non-Premixed Rotating Detonation Combustors
,”
Combust. Flame
,
240
, p.
112013
.10.1016/j.combustflame.2022.112013
9.
Bach
,
E.
,
Stathopoulos
,
P.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2020
, “
Performance Analysis of a Rotating Detonation Combustor Based on Stagnation Pressure Measurements
,”
Combust. Flame
,
217
, pp.
21
36
.10.1016/j.combustflame.2020.03.017
10.
Sato
,
T.
,
Chacon
,
F.
,
White
,
L.
,
Raman
,
V.
, and
Gamba
,
M.
,
2021
, “
Mixing and Detonation Structure in a Rotating Detonation Engine With an Axial Air Inlet
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3769
3776
.10.1016/j.proci.2020.06.283
11.
Pal
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2021
, “
Multidimensional Numerical Modeling of Combustion Dynamics in a Non-Premixed Rotating Detonation Engine With Adaptive Mesh Refinement
,”
ASME J. Energy Res. Technol.
,
143
, p.
112308
.10.1115/1.4050590
12.
Prakash
,
S.
,
Raman
,
V.
,
Lietz
,
C.
,
Hargus
,
W. A.
, and
Schumaker
,
S. A.
,
2020
, “
High Fidelity Simulations of a Methane-Oxygen Rotating Detonation Rocket Engine
,”
AIAA
Paper No. 2020-0688.10.2514/6.2020-0688
13.
Pal
,
P.
,
Demir
,
S.
, and
Som
,
S.
,
2022
, “
Numerical Modeling of Combustion Dynamics in a Full-Scale Rotating Detonation Rocket Engine Using Large Eddy Simulations
,”
ASME J. Energy Res. Technol.
,
145
, p. 021702.10.1115/1.4055206
14.
Lietz
,
C.
,
Ross
,
M.
,
Desai
,
Y.
, and
Hargus
,
W. A.
,
2020
, “
Numerical Investigation of Operational Performance in a Methane-Oxygen Rotating Detonation Rocket Engine
,”
AIAA
Paper No. 2020-0687.10.2514/6.2020-0687
15.
Pal
,
P.
,
Demir
,
S.
,
Kundu
,
P.
, and
Som
,
S.
,
2021
, “
Large-Eddy Simulations of Methane-Oxygen Combustion in a Rotating Detonation Rocket Engine
,”
AIAA
Paper No. 2021-3642.10.2514/6.2021-3642
16.
Pal
,
P.
,
Xu
,
C.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2020
, “
Large-Eddy Simulation and Chemical Explosive Mode Analysis of Non-Ideal Combustion in a Non-Premixed Rotating Detonation Engine
,”
AIAA
Paper No. 2020-2161.10.2514/6.2020-2161
17.
Pal
,
P.
,
Xu
,
C.
,
Kumar
,
G.
,
Drennan
,
S.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2020
, “
Large-Eddy Simulations and Mode Analysis of Ethylene/Air Combustion in a Non-Premixed Rotating Detonation Engine
,”
AIAA
Paper No. 2020-3876.10.2514/6.2020-3876
18.
Luo
,
Z.
,
Yoo
,
C. S.
,
Richardson
,
E.
,
Chen
,
J. H.
,
Law
,
C. K.
, and
Lu
,
T.
,
2012
, “
Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in a Highly-Heated Coflow
,”
Combust. Flame
,
159
(
1
), pp.
265
274
.10.1016/j.combustflame.2011.05.023
19.
Xu
,
C.
,
Park
,
J. W.
,
Yoo
,
C. S.
,
Chen
,
J. H.
, and
Lu
,
T.
,
2019
, “
Identification of Premixed Flame Propagation Modes Using Chemical Explosive Mode Analysis
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2407
2415
.10.1016/j.proci.2018.07.069
20.
Depperschmidt
,
D. L.
,
Tobias
,
J. R.
,
Miller
,
R. S.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Stout
,
J. B.
,
2019
, “
Time-Resolved PIV Diagnostics to Measure Flow-Field Exiting Methane-Fueled Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-1514.10.2514/6.2019-1514
21.
Athmanathan
,
V.
,
Rahman
,
K. A.
,
Lauriola
,
D. K.
,
Braun
,
J.
,
Paniagua
,
G.
,
Slipchenko
,
M. N.
,
Roy
,
S.
, and
Meyer
,
T. R.
,
2021
, “
Femtosecond/Picosecond Rotational Coherent Anti-Stokes Raman Scattering Thermometry in the Exhaust of a Rotating Detonation Combustor
,”
Combust. Flame
,
231
, p.
111504
.10.1016/j.combustflame.2021.111504
22.
Paxson
,
D. E.
, and
Naples
,
A.
,
2017
, “
Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment
,”
AIAA
Paper No. 2017-1746.10.2514/6.2017-1746
23.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Performance of Axial Turbines Exposed to Large Fluctuations
,”
AIAA
Paper No. 2017-4817.10.2514/6.2017-4817
24.
Lynch
,
S. P.
, and
Boggio
,
M.
,
2022
, “
Computational Analysis of Rotating Detonation Engine Exhaust Interacting With a Turbine Vane
,”
AIAA
Paper No. 2022-1720.10.2514/6.2022-1720
25.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2017
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power
,
33
(
1
), pp.
121
130
.10.2514/1.B36164
26.
Talukdar
,
S.
,
Langner
,
D.
,
Gupta
,
A.
, and
Agrawal
,
A. K.
,
2023
, “
Performance Characteristics of a Rotating Detonation Combustor Exiting Into a Pressurized Plenum to Simulate Gas Turbine Inlet
,”
ASME J. Energy Res. Technol.
,
146
(
4
), p.
041015
.10.1115/1.4063710
27.
Zhao
,
T.
,
Zhu
,
J.
,
Ling
,
M.
,
Yan
,
C.
, and
You
,
Y.
,
2023
, “
Coupling Characteristic Analysis and Propagation Direction Control in Hydrogen-Air Rotating Detonation Combustor With Turbine
,”
Int. J. Hydrogen Energy
,
48
(
58
), pp.
22250
22263
.10.1016/j.ijhydene.2023.03.103
28.
Shao
,
X.
,
Yang
,
H.
,
Zhao
,
N.
,
Zhai
,
D.
,
Jin
,
S.
,
Zhang
,
W.
, and
Zheng
,
H.
,
2024
, “
Numerical Study on the Interaction Between Rotating Detonation Wave and Turbine Stator Blades With Multicomponent Mixtures
,”
Int. J. Hydrogen Energy
,
49
, pp.
1436
1445
.10.1016/j.ijhydene.2023.10.065
29.
Athmanathan
,
V.
,
Fisher
,
J. M.
,
Ayers
,
Z.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Braun
,
J.
,
Meyer
,
T. R.
,
Paniagua
,
G.
,
Fugger
,
C. A.
, and
Roy
,
S.
,
2019
, “
Turbine-Integrated High-Pressure Optical RDE (THOR) for Injection and Detonation Dynamics Assessment
,”
AIAA
Paper No. 2019-4041.10.2514/6.2019-4041
30.
Braun
,
J.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Liu
,
Z.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T.
,
2019
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-3873.10.2514/6.2019-3873
31.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell CFD Code for Rapid Grid Generation Applied to in-Cylinder Diesel Engine Simulations
,”
SAE
Paper No. 2007-01-0159.10.4271/2007-01-0159
32.
Pal
,
P.
,
Braun
,
J.
,
Karimli
,
K.
,
Athmanathan
,
V.
,
Paniagua
,
G.
, and
Meyer
,
T. R.
,
2023
, “
Large-Eddy Simulations of a Hydrogen-Air Non-Premixed Rotating Detonation Combustor Coupled With a Downstream Nozzle
,”
AIAA
Paper No. 2023-4271.10.2514/6.2023-4271
33.
Chumakov
,
S. G.
, and
Rutland
,
C. J.
,
2005
, “
Dynamic Structure Subgrid-Scale Models for Large Eddy Simulation
,”
Int. J. Numer. Methods Fluids
,
47
(
8–9
), pp.
911
923
.10.1002/fld.907
34.
Angelberger
,
C.
,
Poinsot
,
T.
, and
Delhay
,
B.
,
1997
, “
Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations
,”
SAE
Paper No. 972881.10.4271/972881
35.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.10.1002/kin.20036
You do not currently have access to this content.