Abstract

The accuracy of three large-eddy simulations (LES) is assessed using a reference dataset obtained via direct numerical simulation (DNS). All of the LES simulations employ the dynamic Smagorinsky model to close the momentum equation and a dynamic gradient model to close the total energy equation. The LES data are obtained on three grids with resolutions spanning from the wall-resolved LES limit to two successive levels coarser in the spatial and temporal domains. The configuration employed for the study is a three-dimensional spatially evolving turbulent shear layer. The working fluid is pure carbon dioxide. The system is maintained at a supercritical state near the critical point such that the field is dominated by strongly nonlinear thermophysics. This allows the analysis to occur under conditions where the subfilter closures are significantly strained by the thermodynamics. Results explore characteristics of the turbulence from both a modeling and fundamental perspective. First, mixing layer growth rates are quantified. Discrepancies are found between the reference DNS data and the LES data. Energy spectra, turbulent transport coefficients, and Reynolds stress anisotropy results are presented to explore the origins of this mismatch.

References

1.
Oefelein
,
J. C.
, and
Yang
,
V.
,
1998
, “
Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines
,”
J. Propul. Power
,
14
(
5
), pp.
843
857
.10.2514/2.5349
2.
Mayer
,
W.
,
Schik
,
A.
,
Schaffler
,
M.
, and
Tamura
,
H.
,
2000
, “
Injection and Mixing Processes in High-Pressure Liquid Oxygen/Gaseous Hydrogen Rocket Combustors
,”
J. Propul. Power
,
16
(
5
), pp.
823
828
.10.2514/2.5647
3.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.10.1016/j.apenergy.2017.02.048
4.
Dahms
,
R. N.
, and
Oefelein
,
J. C.
,
2013
, “
On the Transition Between Two-Phase and Single-Phase Interface Dynamics in Multicomponent Fluids at Supercritical Pressures
,”
Phys. Fluids
,
25
(
9
), pp.
1
24
.10.1063/1.4820346
5.
Bellan
,
J.
,
2000
, “
Supercritical (and Subcritical) Fluid Behavior and Modeling: Drops, Streams, Shear and Mixing Layers, Jets and Sprays
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
329
366
.10.1016/S0360-1285(00)00008-3
6.
Mayer
,
W. O. H.
,
Schik
,
A. H. A.
,
Vielle
,
B.
,
Chauveau
,
C.
,
Gokalp
,
I.
,
Talley
,
D. G.
, and
Woodward
,
R. D.
,
1998
, “
Atomization and Breakup of Cryogenic Propellants Under High-Pressure Subcritical and Supercritical Conditions
,”
J. Propul. Power
,
14
(
5
), pp.
835
842
.10.2514/2.5348
7.
Oschwald
,
M.
, and
Schik
,
A.
,
1999
, “
Supercritical Nitrogen Free Jet Investigated by Spontaneous Raman Scattering
,”
Exp. Fluids
,
27
(
6
), pp.
497
506
.10.1007/s003480050374
8.
Chehroudi
,
B.
,
Talley
,
D.
, and
Coy
,
E.
,
2002
, “
Visual Characteristics and Initial Growth Rates of Round Cryogenic Jets at Subcritical and Supercritical Pressures
,”
Phys. Fluids
,
14
(
2
), pp.
850
861
.10.1063/1.1430735
9.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
10.
Lilly
,
D. K.
,
1966
, “
On the Application of the Eddy Viscosity Concept in the Inertial Subrange of Turbulence
,”
National Center for Atmospheric Research
,
Boulder, CO
, Report No.
NCAR-123
,.
11.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
12.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids
,
3
(
11
), pp.
2746
2757
.10.1063/1.858164
13.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.10.1063/1.858280
14.
Miller
,
R. S.
,
Harstad
,
K. G.
, and
Bellan
,
J.
,
2002
, “
Direct Numerical Simulations of Supercritical Fluid Mixing Layers Applied to Heptane–Nitrogen
,”
J. Fluid Mech.
,
461
, pp.
411
412
.10.1017/S0022112002008625
15.
Okong'o
,
N. A.
, and
Bellan
,
J.
,
2002
, “
Direct Numerical Simulation of a Transitional Supercritical Binary Mixing Layer: Heptane and Nitrogen
,”
J. Fluid Mech.
,
464
, pp.
1
34
.10.1017/S0022112002008480
16.
Selle
,
L. C.
,
Okong'o
,
N. A.
,
Bellan
,
J.
, and
Harstad
,
K. G.
,
2007
, “
Modelling of Subgrid-Scale Phenomena in Supercritical Transitional Mixing Layers: An A Priori Study
,”
J. Fluid Mech.
,
593
, pp.
57
91
.10.1017/S0022112007008075
17.
Ovais
,
S. M.
,
Kemenov
,
K. A.
, and
Miller
,
R. S.
,
2021
, “
Direct Numerical Simulation of Supercritical Oxy-Methane Mixing Layers With CO2 Substituted Counterparts
,”
Phys. Fluids
,
33
(
3
), p.
035115
.10.1063/5.0039166
18.
Unnikrishnan
,
U.
,
Oefelein
,
J. C.
, and
Yang
,
V.
,
2022
, “
Subgrid Modeling of the Filtered Equation of State With Application to Real-Fluid Turbulent Mixing at Supercritical Pressures
,”
Phys. Fluids
,
34
(
6
), p.
065112
.10.1063/5.0088074
19.
Lapenna
,
P. E.
, and
Creta
,
F.
,
2017
, “
Mixing Under Transcritical Conditions: An A-Priori Study Using Direct Numerical Simulation
,”
J. Supercrit. Fluids
,
128
, pp.
263
278
.10.1016/j.supflu.2017.05.005
20.
Taskinoglu
,
E. S.
, and
Bellan
,
J.
,
2010
, “
A Posteriori Study Using a DNS Database Describing Fluid Disintegration and Binary-Species Mixing Under Supercritical Pressure: Heptane and Nitrogen
,”
J. Fluid Mech.
,
645
, pp.
211
254
.10.1017/S0022112009992606
21.
Borghesi
,
G.
, and
Bellan
,
J.
,
2015
, “
A Priori and A Posteriori Investigations for Developing Large Eddy Simulations of Multi-Species Turbulent Mixing Under High-Pressure Conditions
,”
Phys. Fluids
,
27
(
3
), pp.
1
35
.10.1063/1.4916284
22.
Peng
,
D.-Y.
, and
Robinson
,
D.
,
1976
, “
New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
23.
Oefelein
,
J. C.
,
2006
, “
Mixing and Combustion of Cryogenic Oxygen-Hydrogen Shear-Coaxial Jet Flames at Supercritical Pressure
,”
Combust. Sci. Technol.
,
178
(
1–3
), pp.
229
252
.10.1080/00102200500325322
24.
Germano
,
M.
,
1986
, “
A Proposal for a Redefinition of the Turbulent Stresses in the Filtered Navier–Stokes Equations
,”
Phys. Fluids
,
29
(
7
), pp.
2323
2324
.10.1063/1.865568
25.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
(
7
), pp.
2152
2164
.10.1063/1.865552
26.
Eidson
,
T. M.
,
1985
, “
Numerical Simulation of the Turbulent Rayleigh-Bénard Problem Using Numerical Subgrid Modeling
,”
J. Fluid Mech.
,
158
, pp.
245
268
.10.1017/S0022112085002634
27.
Oefelein
,
J. C.
,
2006
, “
Large Eddy Simulation of Turbulent Combustion Processes in Propulsion and Power Systems
,”
Prog. Aerosp. Sci.
,
42
(
1
), pp.
2
37
.10.1016/j.paerosci.2006.02.001
28.
Oefelein
,
J. C.
,
Schefer
,
R. W.
, and
Barlow
,
R. W.
,
2006
, “
Toward Validation of LES for Turbulent Combustion
,”
AIAA J.
,
44
(
3
), pp.
418
433
.10.2514/1.16425
29.
Oefelein
,
J. C.
,
Sankaran
,
V.
, and
Drozda
,
T. G.
,
2007
, “
Large Eddy Simulation of Swirling Particle-Laden Flow in a Model Axisymmetric Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2291
2299
.10.1016/j.proci.2006.08.017
30.
Schau
,
K. A.
,
Purushotham
,
D.
, and
Oefelein
,
J. C.
,
2023
, “
Programming Approaches for Scalability, Performance, and Portability of Combustion Physics Codes
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
5137
5144
.10.1016/j.proci.2022.08.093
31.
Schau
,
K. A.
,
Johnson
,
C.
,
Muller
,
J.
, and
Oefelein
,
J. C.
,
2022
, “
An Ensemble Synthetic Eddy Method for Accurate Treatment of Inhomogeneous Turbulence
,”
Comput. Fluids
,
248
, p.
105671
.10.1016/j.compfluid.2022.105671
32.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to
Reτ=590,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
33.
Jarrin
,
N.
,
2008
, “
Synthetic Inflow Boundary Conditions for the Numerical Simulation of Turbulence
,”
Ph.D. thesis
,
The University of Manchester
,
Manchester, UK
.https://openaccess.library.uitm.edu.my/Record/ndltd-bl.uk-oai-ethos.bl.uk-676725
34.
Piomelli
,
U.
,
Zang
,
T. A.
,
Speziale
,
C. G.
, and
Hussaini
,
M. Y.
,
1990
, “
On the Large–Eddy Simulation of Transitional Wall–Bounded Flows
,”
Phys. Fluids A: Fluid Dyn.
,
2
(
2
), pp.
257
265
.10.1063/1.857774
35.
Lim
,
C. H.
,
2022
, “
Experimental Investigation of Supercritical CO2 Flow Turbulent Mixing and Its Visualization
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.https://hdl.handle.net/1853/73066
36.
Mohaghar
,
M.
,
Carter
,
J.
,
Pathikonda
,
G.
, and
Ranjan
,
D.
,
2019
, “
The Transition to Turbulence in Shock-Driven Mixing: Effects of Mach Number and Initial Conditions
,”
J. Fluid Mech.
,
871
, pp.
595
635
.10.1017/jfm.2019.330
37.
Lumley
,
J. L.
, and
Newman
,
G. R.
,
1977
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
82
(
1
), pp.
161
178
.10.1017/S0022112077000585
38.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.