The laminar boundary layer induced by a horizontal forced flow along an infinite vertical cylinder with a step change of surface temperature is studied by a finite-difference method. Close to the thermal leading edge, the buoyancy force induces a strong free-convection boundary layer. Slightly above the thermal leading edge, the boundary layer starts to separate at the rear stagnation line (φ = 180 deg). The region of separated flow grows toward the forward stagnation line and becomes stationary at φ = 104 deg as one moves upward. In other words, free convection dominates the heat transfer along the thermal leading edge. The importance of forced convection increases as one moves vertically from the thermal leading edge and eventually becomes the dominant mode. The numerical results show that the free-convection boundary layer is suppressed at the forward stagnation line and is carried toward the rear stagnation line by the forced convection. The phenomenon shares many similarities with a thermal plume affected by forced convection.

This content is only available via PDF.
You do not currently have access to this content.