The problem being addressed is steady, constant property, turbulent, thin boundary layer flow over a body with a pressure gradient. To find the local Stanton number distribution, the integral energy equation, cast in inner variables, is solved for the thermal boundary layer thickness. The needed velocity distributions are given by the inner law and by the combined law of the wall and wake. Approximate temperature profiles are based upon thermal inner and outer laws, except for the thermal superlayer, which is modeled by a polynomial distribution of temperature. Comparison of predictions is made with experimental Stanton numbers from the literature. Very good agreement is noted for zero, adverse, and favorable pressure gradients, including very strong accelerations tending toward laminarization, with less satisfactory agreement in regions “relaxing” from acceleration.

This content is only available via PDF.
You do not currently have access to this content.