Experimental and numerical studies (using the finite element method) were conducted in a rectangular vessel for a high Prandtl number fluid (Pr = 880 at 25°C). The pattern of convective rolls is perturbed by lateral heating of one of the smaller sides of the box. The wave number of the roll pattern is within a narrow range (±10 percent at R = 4.6RC where R and Rc are the Rayleigh number and its critical value of Be´nard convection). The formation of a large roll induced by the lateral heating causes a slight variation in the wave number of the rolls, accompanied by the disappearance of pairs of rolls, or single rolls, depending on the boundary conditions at the other small side of the enclosure. In all instances, this disappearance respects the mechanical coupling between the rolls. Temperature and velocity fields are assessed, as well as the heat transfer. The transient states observed during the experimentation are well reproduced by the two-dimensional numerical model developed for this study.

1.
Ahlers
G.
,
1980
, “
Effect of Departures From the Oberbeck-Boussinesq Approximation on the Heat Transport of Horizontal Convecting Fluid Layers
,”
J. Fluid Mech.
, Vol.
98
, pp.
137
148
.
2.
Bathe
K. J.
, and
Dong
J.
,
1987
, “
Solution of Incompressible Viscous Fluid Flow with Heat Transfer Using ADINA-F
,”
Computer & Structures
, Vol.
26
, pp.
17
31
.
3.
Bercovier
M.
, and
Pironneau
O.
,
1979
, “
Error Estimates for Finite Element Solution of the Stokes Problem in the Primitive Variables
,”
Numer. Math.
, Vol.
33
, pp.
211
224
.
4.
Berge, P., Pomeau, Y., and Vidal, Ch., 1988, L’ordre dans le chaos, Hermann, Paris.
5.
Breton, J. L., 1989, “Similitude et stabilite´ des e´coulements de convection naturelle dans une cavite´ ferme´e a` haut nombre de Rayleigh (Pie`ce d’Habitation),” Thesis, Universite´ Paul Sabatier, Toulouse, France.
6.
Bu¨hler
K.
,
Kirchartz
K. R.
, and
Oertel
H.
,
1979
, “
Steady Convection in a Horizontal Fluid Layer
,”
Acta Mech.
, Vol.
31
, pp.
155
171
.
7.
Busse
F. H.
,
1967
, “
The Stability of Finite Amplitude Cellular Convection and Its Relation to an Extremum Principle
,”
J. Fluid Mech.
, Vol.
30
, Part 4, pp.
625
649
.
8.
Busse
F. H.
, and
Whitehead
J. A.
,
1971
, “
Instabilities of Convection Rolls in a High Prandtl Number Fluid
,”
J. Fluid Mech.
, Vol.
47
, pp.
305
320
.
9.
Busse
F. H.
,
1978
, “
Non Linear Properties of Convection
,”
Rep. Prog. Phys.
, Vol.
41
, pp.
1929
1967
.
10.
Carey, G. F., and Oden, J. T., 1986, Finite Elements: Fluid Mechanics, Vol. 6, Prentice-Hall, Englewood Cliffs, NJ.
11.
Catton
I.
,
1972
, “
The Effect of Insulating Vertical Walls on the Onset of Motion in a Fluid Heated From Below
,”
Int. J. Heat and Mass Transfer
, Vol.
15
, pp.
665
672
.
12.
Cerisier
P.
,
Rahal
S.
,
Cordonnier
J.
, and
Lebon
G.
,
1998
, “
Thermal Influence of Boundaries on the Onset of Rayleigh-Be´nard Convection
,”
Int. J. Heat and Mass Transfer
, Vol.
41
, pp.
3309
3320
.
13.
Chikhaoui, A., 1989, “Stabilite´ des e´coulements thermoconvectifs dans unecouche fluide soumise a` un gradient thermique horizontal,” Thesis, Universite´ d’Aix-Marseille II, France.
14.
Croquette
V.
,
1989
, “
Convective Pattern Dynamics of Low Prandtl Number: Part I
,”
Contemp. Phys.
, Vol.
30
, pp.
113
133
.
15.
Daniels
P. G.
, and
Wang
P.
,
1994
, “
Numerical Study of Thermal Convection in Tall Laterally Heated Cavities
,”
Int. J. Heat and Mass Transfer
, Vol.
37
, pp.
375
386
.
16.
De Vahl Davis
G.
, and
Jones
I. P.
,
1983
, “
Natural Convection in a Square Cavity: A Comparison Exercise
,”
Int. J. Numerical Methods in Fluids
, Vol.
3
, pp.
227
248
.
17.
De Vahl Davis
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numerical Methods in Fluids
, Vol.
3
, pp.
249
264
.
18.
Elder
J. W.
,
1965
, “
Turbulence Free Convection in a Vertical Slot
,”
J. Fluid Mech.
, Vol.
23
, pp.
99
111
.
19.
Farhadieh
R.
, and
Tankin
R. S.
,
1974
, “
Interferometric Study of Two-Dimensional Be´nard Convection Cells
,”
J. Fluid Mech.
, Vol.
66
, pp.
739
752
.
20.
Gollub
J. P.
,
Mc Carriar
A. R.
, and
Steinman
J. F.
,
1982
, “
Convection Pattern Evolution and Secondary Instabilities
,”
J. Fluid Mech.
, Vol.
125
, pp.
259
281
.
21.
Gray
D. D.
, and
Giorgini
A.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat and Mass Transfer
, Vol.
19
, pp.
545
551
.
22.
Imberger
J.
,
1974
, “
Natural Convection in a Shallow Cavity with Differentially Heated End Walls. Part 3. Experimental Results
,”
J. Fluid Mech.
, Vol.
65
, pp.
247
260
.
23.
Jaeger
M.
,
Medale
M.
, and
Randriamampianina
A.
,
1996
, “
Numerical Modeling of Buoyancy-Driven Flows in a Rotating Cylindrical Cavity: Comparison of a Finite Element Model with a Spectral Model
,”
Numerical Heat Transfer, Part A
, Vol.
30
, pp.
779
798
.
24.
Karyakin
Y. E.
,
Sokovishin
YU. A.
, and
Martynenko
O. G.
,
1988
, “
Transient Natural Convection in Triangular Enclosures
,”
Int. J. Heat and Mass Transfer
, Vol.
31
, pp.
1759
1766
.
25.
Kirchartz
K. R.
, and
Oertel
H.
,
1988
, “
Three-Dimensional Thermal Cellular Convection in Rectangular Boxes
,”
J. Fluid Mech.
, Vol.
192
, pp.
249
186
.
26.
Kolodner
P.
,
Walden
R. W.
,
Passner
A.
, and
Surko
C. M.
,
1986
, “
Rayleigh-Be´nard Convection in an Intermediate-Aspect-Ratio Rectangular Container
,”
J. Fluid Mech.
, Vol.
163
, pp.
195
226
.
27.
Koschmieder
E. L.
,
1996
, “
On Convection on a Uniformly Heated Plane
,”
Beitr. Phys. Atmos.
, Vol.
39
, pp.
1
11
.
28.
Koschmieder
E. L.
, and
Pallas
S. G.
,
1974
, “
Heat Transfer Through a Shallow, Horizontal Convecting Fluid Layer
,”
Int. J. Heat Mass Transfer
, Vol.
17
, pp.
991
1002
.
29.
Koschmieder
E. L.
,
1974
, “
Be´nard Convection
,”
Adv. Chem. Phys.
, Vol.
26
, pp.
177
212
.
30.
Koschmieder, E. L., 1993, Be´nard Cells and Taylor Vortices, Batchelor, ed. Cambridge University Press, Cambridge, UK.
31.
Krishnamurti
R.
,
1970
, “
On the Transition to Turbulent Convection. Part 1. The Transition From Two-to Three Dimensional Flow
,”
J. Fluid Mech.
, Vol.
42
, pp.
295
307
.
32.
Krishnan
R.
,
1985
, “
A Finite Element Approximation of the Be´nard Problem
,”
Communications in Applied Numerical Methods
, Vol.
1
, pp.
317
324
.
33.
Le Quere
P.
,
1991
, “
Accurate Solutions to the Square Thermally Driven Cavity at High Rayleigh Number
,”
Computer Fluids
, Vol.
20
, No.
1
, pp.
29
41
.
34.
Leontiev
A. J.
, and
Kirdyashkin
A. G.
,
1968
, “
Experimental Study of Flow Patterns and Temperature Fields in Horizontal Free Convection Liquid Layers
,”
Int. J. Heat and Mass Transfer
, Vol.
11
, pp.
1461
1466
.
35.
Manneville, P., 1990, Dissipative Structures and Weak Turbulence, Academic Press, London.
36.
Nield
D. A.
,
1994
, “
Convection Induced by an Inclined Temperature Gradient in a Shallow Horizontal Layer
,”
Int. J. Heat and Fluid Flow
, Vol.
15
, No.
2
, pp.
157
162
.
37.
Paolucci
S.
, and
Chenoweth
D. R.
,
1987
, “
Departures from the Boussinesq Approximation in Laminar Be´nard Convection
,”
Phys. Fluids
, Vol.
30
, pp.
1561
1564
.
38.
Patankar
S. V.
, and
Spalding
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfert in Three Dimensional Parabolic Flows
,”
Int. J. Heat and Mass Transfer
, Vol.
15
, pp.
1787
1806
.
39.
Patterson
C.
, and
Imberger
J.
,
1980
, “
Unsteady Natural Convection in Rectangular Cavity
,”
J. Fluid Mech.
, Vol.
100
, pp.
65
86
.
40.
Schlu¨ter
A.
,
Lortz
D.
, and
Busse
F. M.
,
1965
, “
On the Stability of Steady Finite Amplitude Convection
,”
J. Fluid Mech.
, Vol.
23
, pp.
129
144
.
41.
Schoepf
W. J.
, and
Patterson
C.
,
1995
, “
Natural Convection in Side Heated Cavity: Visualization of the Initial Flow Features
,”
Fluid Mech.
, Vol.
295
, pp.
357
379
.
42.
Simpkins
P. G.
, and
Chen
K. S.
,
1986
, “
Convection in Horizontal Cavities
,”
J. Fluid Mech.
, Vol.
166
, pp.
21
39
.
43.
Stork
K.
, and
Mu¨ller
U.
,
1972
, “
Convection in Boxes: Experiments
,”
J. Fluid Mech.
, Vol.
54
, pp.
599
611
.
44.
Taylor
C.
, and
Ijam
A. Z.
,
1979
, “
A Finite Element Numerical Solution of Natural Convection in Enclosed Cavities
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
19
, pp.
429
446
.
45.
Wang
P.
, and
Daniels
P. G.
,
1994
, “
Numerical Study of Thermal Convection in Shallow Cavities with Conducting Boundaries
,”
Int. J. Heat and Mass Transfer
, Vol.
37
, No.
3
, pp.
387
399
.
46.
Willis
G. E.
,
Deardorff
J. W.
, and
Somerville
R. C.
,
1972
, “
Roll Diameter Dependence in Rayleigh Convection and Its Effect Upon the Heat Flux
,”
J. Fluid Mech.
, Vol.
54
, pp.
351
368
.
This content is only available via PDF.
You do not currently have access to this content.