This study uses the molecular dynamics computational technique to investigate the thermal conductivity of solid thin films in the direction perpendicular to the film plane. In order to establish a benchmark reference, the computations are based on the widely used Lennard-Jones argon model due to its agreement with experimental liquid-phase data, its physically meaningful parameters, and its simple two-body form. Thermal conductivity increases with film thickness, as expected from thin-film experimental data and theoretical predictions. The calculated values are roughly 30 percent higher than anticipated. Varying the boundary conditions, heat flux, and lateral dimensions of the films causes no observable change in the thermal conductivity values. The present study also delineates the conditions necessary for meaningful thermal conductivity calculations and offers recommendations for efficient simulations. This work shows that molecular dynamics, applied under the correct conditions, is a viable tool for calculating the thermal conductivity of solid thin films. More generally, it demonstrates the potential of molecular dynamics for ascertaining microscale thermophysical properties in complex structures. [S0022-1481(00)02303-3]

1.
Osinski
,
M.
,
1991
, “
Vertical-Cavity Surface-Emitting Semiconductor Lasers: Present Status and Future Prospects
,”
Proc. SPIE
,
1418
, pp.
2
24
.
2.
Inoue
,
R.
,
Tanaka
,
H.
, and
Nakanishi
,
K.
,
1996
, “
Molecular Dynamics Simulation Study of the Anomalous Thermal Conductivity of Clathrate Hydrates
,”
J. Chem. Phys.
,
104
, pp.
9569
9577
.
3.
Mountain
,
R. D.
, and
MacDonald
,
R. A.
,
1983
, “
Thermal Conductivity of Crystals: A Molecular-Dynamics Study of Heat Flow in a Two-Dimensional Crystal
,”
Phys. Rev. B
,
28
, pp.
3022
3025
.
4.
Kaburaki
,
H.
, and
Machida
,
M.
,
1993
, “
Thermal Conductivity in One-Dimensional Lattices of Fermi-Pasta-Ulam Type
,”
Phys. Lett. A
,
181
, pp.
85
90
.
5.
Kotake
,
S.
, and
Wakuri
,
S.
,
1994
, “
Molecular Dynamics Study of Heat Conduction in Solid Materials
,”
JSME Int. J. Ser. B
,
37
, pp.
103
108
.
6.
Volz
,
S.
, and
Chen
,
G.
,
1999
, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
,
75
, pp.
2056
2058
.
7.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford, UK.
8.
Car, R., 1996, “Modeling Materials by Ab-Initio Molecular Dynamics,” Quantum Theory of Real Materials, Chelikowsky, J. R., and Louie, S. G., eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 23–37.
9.
Kristensen
,
W. D.
,
Jensen
,
E. J.
, and
Cotterill
,
R. M. J.
,
1974
, “
Thermodynamics of Small Clusters of Atoms: A Molecular Dynamics Simulation
,”
J. Chem. Phys.
,
60
, pp.
4161
4169
.
10.
Chou
,
F. C.
,
Lukes
,
J. R.
,
Liang
,
X. G.
,
Takahashi
,
K.
, and
Tien
,
C. L.
,
1999
, “
Molecular Dynamics in Microscale Thermophysical Engineering
,”
Ann. Rev. Heat Transf.
,
10
, pp.
141
176
.
11.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
,
1982
, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
, pp.
637
649
.
12.
Ikeshoji
,
T.
, and
Hafskjold
,
B.
,
1994
, “
Non-equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and through Liquid-Gas Interface
,”
Mol. Phys.
,
81
, pp.
251
261
.
13.
Jacucci
,
G.
, and
Rahman
,
A.
,
1984
, “
Comparing the Efficiency of Metropolis Monte Carlo and Molecular Dynamics Methods for Configuration Space Sampling
,”
Nuovo Cimento
,
D4
, pp.
341
356
.
14.
Dobbs
,
E. R.
, and
Jones
,
G. O.
,
1957
, “
Theory and Properties of Solid Argon
,”
Rep. Prog. Phys.
,
20
, pp.
516
564
.
15.
Dugdale
,
J. S.
, and
MacDonald
,
D. K. C.
,
1955
, “
Lattice Thermal Conductivity
,”
Phys. Rev.
,
98
, pp.
1751
1752
.
16.
CRC Handbook of Chemistry and Physics, 1996, CRC Press, Boca Raton, FL.
17.
Volz
,
S.
,
Saulnier
,
J.-B.
,
Lallemand
,
M.
,
Perrin
,
B.
,
Depondt
,
P.
, and
Mareschal
,
M.
,
1996
, “
Transient Fourier-law Deviation by Molecular Dynamics in Solid Argon
,”
Phys. Rev. B
,
54
, pp.
340
347
.
18.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Ed., Cambridge University Press, Cambridge, UK.
19.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics
,”
J. Chem. Phys.
,
18
, pp.
817
829
.
20.
Lukes, J. R., 2000, “Molecular Dynamics Simulation of Thermal Conduction in Thin Films and Nanoporous Materials,” Ph.D. thesis, University of California, Berkeley, CA, in progress.
21.
Tenenbaum
,
A.
,
Ciccotti
,
G.
, and
Gallico
,
R.
,
1982
, “
Stationary Nonequilibrium States by Molecular Dynamics
,”
Phys. Rev. A
,
25
, pp.
2778
2787
.
22.
Hafskjold
,
B.
, and
Ratkje
,
S. K.
,
1995
, “
Criteria for Local Equilibrium in a System with Transport of Heat and Mass
,”
J. Stat. Phys.
,
78
, pp.
463
494
.
23.
Touloukian, Y. S., Liley, P. E., and Saxena, S. C., eds., 1970, Thermal Conductivity: Nonmetallic Liquids and Gases, IFI/Plenum, New York.
24.
Haile, J. M., 1992, Molecular Dynamics Simulation: Elementary Methods, Wiley, New York.
25.
Kaburaki
,
H.
,
Li
,
J.
, and
Yip
,
S.
,
1999
, “
Thermal Conductivity of Solid Argon by Classical Molecular Dynamics
,”
Mater. Res. Soc. Symp. Proc.
,
538
, pp.
503
508
.
26.
Casimir
,
H. B. G.
,
1938
, “
Note on the Conduction of Heat in Crystals
,”
Physica
,
5
, pp.
495
500
.
27.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, 2nd Ed., Hemisphere, Washington, DC.
28.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, pp.
7
16
.
29.
Ciccotti
,
G.
, and
Tenenbaum
,
A.
,
1980
, “
Canonical Ensemble and Nonequilibrium States by Molecular Dynamics
,”
J. Stat. Phys.
,
23
, pp.
767
772
.
30.
Flik
,
M. I.
,
Choi
,
B. I.
, and
Goodson
,
K. E.
,
1992
, “
Heat Transfer Regimes in Microstructures
,”
ASME J. Heat Transfer
,
114
, pp.
666
674
.
31.
Kittel, C., 1996, Introduction to Solid State Physics, 7th Ed., Wiley, New York.
You do not currently have access to this content.