Laser-induced melting and subsequent resolidification of a metal powder mixture consisting of low and high melting temperature materials was experimentally examined. First, the onset of melting for the low melting point material was determined and correlated with dimensionless parameters. Next, the morphologies of the heat affected zones were categorized and finally, a process map for use in rapid prototyping technology was developed. The results indicate a strong dependence of the system behavior on the laser-material coupling efficiency and in turn, the ratio of the laser beam radius to particle size.

1.
Dosanjh
,
S. S.
,
1989
, “
Melt Propagation in Porous Media
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1373
1376
.
2.
Miller, R. D., 1980, “Freezing Phenomena in Soils,” Applications of Soil Physics, Academic Press, New York, pp. 254–318.
3.
Mughal, M. P., and Plumb, O. A., 1993, “Heat Transfer During Melting of Packed Particulate Beds,” Heat and Mass Transfer in Materials Processing and Manufacturing, D. A. Zumbrunnen et al., eds., ASME HTD Vol. 261, pp. 63–72.
4.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping Journal
,
1
, pp.
26
36
.
5.
Weiss
,
W. L.
, and
Bourell
,
D. L.
,
1993
, “
Selective Laser Sintering of Intermetallics
,”
Metallurgical Transactions A-Physical Metallurgy and Materials Science
,
24
, pp.
757
759
.
6.
Conley
,
J. G.
, and
Marcus
,
H. L.
,
1997
, “
Rapid Prototyping and Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
811
816
.
7.
Kandis
,
M.
, and
Bergman
,
T. L.
,
1997
, “
Observation, Prediction and Correlation of Geometric Shape Evolution Induced by Non-Isothermal Sintering of Polymer Powder
,”
ASME J. Heat Transfer
,
119
, pp.
824
831
.
8.
Kandis
,
M.
,
Buckley
,
C. W.
, and
Bergman
,
T. L.
,
1999
, “
An Engineering Model for Laser-Induced Sintering of Polymer Powders
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
360
365
.
9.
Kandis
,
M.
, and
Bergman
,
T. L.
,
2000
, “
A Simulation-Based Correlation of the Effective Thermal Conductivity and Porosity of Objects Produced by Laser-Induced Sintering of Polymer Powders
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp.
439
444
.
10.
Bunnell, D. E., 1995, Fundamentals of Selective Laser Sintering of Metals, Ph.D. thesis of the University of Texas at Austin.
11.
Zhang
,
Y.
,
Faghri
,
A.
,
Buckley
,
C. W.
, and
Bergman
,
T. L.
,
2000
, “
Three-Dimensional Sintering of Two Component Metal Powders with Stationary and Moving Laser Beams
,”
ASME J. Heat Transfer
122
, pp.
150
158
.
12.
Haag
,
M.
,
Hugel
,
H.
,
Algright
,
C. E.
, and
Ramasamy
,
S.
,
1996
, “
CO2 Laser Light Absorption Characteristics of Metal Powders
,”
J. Appl. Phys.
,
79
, pp.
3835
3841
.
13.
Touloukian, Y. S., and Ho, C. Y., 1972, Thermophysical Properties of Matter, 7, Thermal Radiative Properties of Metallic Solids, Plenum Press, New York.
14.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
15.
Touloukian, Y. S., and Ho, C. Y., 1972, Thermophysical Properties of Matter, 2, Thermal Conductivity of Metallic Solids, Plenum Press, New York.
16.
Iida, T., and Guthrie, R. I. L., 1988, The Physical Properties of Liquid Metals, Oxford University Press, New York.
17.
Avallone, E. A., and Baumeister, T., 1999, Mark’s Handbook for Mechanical Engineers, McGraw-Hill, New York.
18.
Nicrobraz® technical data sheet (Wall Colmonoy Corp.)
19.
Duley, W. W., 1983, Laser Processing and Analysis of Materials, Plenum Press, New York.
20.
Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
21.
Bala
,
K.
,
Pradhan
,
P. R.
,
Saxena
,
N. S.
, and
Saksena
,
M. P.
,
1989
, “
Effective Thermal Conductivity of Copper Powders
,”
J. Phys. D
,
22
, pp.
1068
1072
.
22.
German
,
R. M.
,
1990
, “
Supersolidus Liquid Phase Sintering Part II: Densification Theory
,”
Int. J. Powder Metall.
,
25
, pp.
35
42
.
23.
Cline
,
H. E.
, and
Anthony
,
T. R.
,
1977
, “
Heat Treating and Melting Material with a Scanning Laser or Electron Beam
,”
J. Appl. Phys.
,
48
, pp.
3895
3900
.
24.
Lax
,
M.
,
1977
, “
Temperature Rise Induced by a Laser Beam
,”
J. Appl. Phys.
,
48
, pp.
3919
3924
.
25.
Nissim
,
Y. I.
,
Lietoila
,
A.
,
Gold
,
R. B.
, and
Gibbons
,
J. F.
,
1980
, “
Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular CW Laser Beam
,”
J. Appl. Phys.
,
51
, pp.
577
583
.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
pp.
3
8
.
27.
Modest
,
M. F.
, and
Abakians
,
H.
,
1986
, “
Heat Conduction in a Moving Semi-Infinite Plane Subjected to a Moving Gaussian Heat Source
,”
ASME J. Heat Transfer
,
108
, pp.
597
601
.
28.
Anthony
,
T. R.
, and
Cline
,
H. E.
,
1997
, “
Surface Rippling Induced by Surface-Tension Gradients During Laser Surface Melting and Alloying
,”
J. Appl. Phys.
,
48
, pp.
3888, 3894
3888, 3894
.
29.
Wei
,
P. S.
,
Chang
,
C. Y.
, and
Chen
,
C. T.
,
1996
, “
Surface Ripple in Electron-Beam Welding Solidification
,”
ASME J. Heat Transfer
,
118
, pp.
960
969
.
You do not currently have access to this content.