Numerical simulations have been performed to study the flow and heat transfer characteristics in the annular space between an inner smooth-cylinder rotating at constant angular velocity and an outer stationary grooved one. A first series of calculations were conducted to determine the ranges of Taylor number and longitudinal aspect ratio for which a two-dimensional modeling can be considered as valid. To this end, a map showing the domain of validity of two dimensional computations is presented. The assumption of circumferential periodicity of the flow is then justified in the range of Taylor numbers investigated. A number of simulations were carried out to investigate the effects of the geometrical parameters describing the cross section of the grooved annulus for various Taylor numbers. To end, correlations describing the influences on the main parameters both on the friction factor and Nusselt numbers are derived by using a design of experiments.

1.
Gazley
,
C.
,
1958
, “
Heat-Transfer Characteristics of the Rotational and Axial Flow Between Concentric Rotating Cylinders
,”
Trans. ASME
,
80
, pp.
79
90
.
2.
Tachibana
,
F.
, and
Fukui
,
S.
,
1964
, “
Convective Heat Transfer on the Rotational and Axial Flow Between Two Concentric Cylinders
,”
Bull. JSME
,
7
, pp.
385
391
.
3.
Yamada
,
Y.
,
1962
, “
Torque Resistance of a Flow Between Rotating Coaxial Cylinders Having Axial Flow
,”
Bulletin JSME
,
5
, No.
5
, pp.
634
642
.
4.
Lee
,
Y. N.
, and
Minkowycz
,
W. J.
,
1989
, “
Heat Transfer Characteristics of the Annulus of Two Coaxial Cylinders With One Cylinder Rotating
,”
Int. J. Heat Mass Transf.
,
32
, pp.
711
722
.
5.
Murphy
,
J. Y.
, and
Patankar
,
S. V.
,
1983
, “
Numerical Study of Heat Transfer From a Rotating Cylinder With External Longitudinal Fins
,”
Numer. Heat Transfer
,
6
, No.
4
, pp.
463
473
.
6.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1992
, “
Numerical Calculations of Convective Heat Transfer Between Rotating Coaxial Cylinders With Periodically Embedded Cavities
,”
ASME J. Heat Transfer
,
114
, pp.
589
596
.
7.
Ziouchi, A., 1996, “Contribution a` l’analyze et a` la mode´lisation des e´changes convectifs dans un entrefer de moteur e´lectrique ferme´”, Ph.D. thesis, Universite´ de Poitiers, France.
8.
Sommerer, Y., Lauriat, G., and Desrayaud, G., 1999, “Convection force´e dans l’entrefer rainure´ d’un moteur e´lectrique,” Proceedings of the SFT 99 Conference, Elsevier, Paris, pp. 185–190.
9.
Pecheux, J., Bousgarbies, J. L., and Bellenoue, M., 1997, “Instabilite´ de Taylor entre un cylindre lisse tournant et un cylindre fixe encoche´,” C. R. Acad. Sci Paris, se´rie II b, pp. 159–163.
10.
Bouafia
,
M.
,
Ziouchi
,
A.
,
Bertin
,
Y.
, and
Saulnier
,
J. P.
,
1999
, “
Etude expe´rimentale et nume´rique des transferts de chaleur en espace annulaire sans de´bit axial et avec cylindre inte´rieur tournant
,”
Int. J. Therm. Sci
,
38
, pp.
547
559
.
11.
Gardiner
,
S. R.
, and
Sabersky
,
R. H.
,
1978
, “
Heat Transfer in an Annular Gap
,”
Int. J. Heat Mass Transf.
,
21
, pp.
1459
1466
.
12.
Alziary de Roquefort
,
T.
, and
Grillaud
,
G.
,
1978
, “
Computation of Taylor Vortex Flow by a Transient Implicit Method
,”
Comput. Fluids
,
6
, pp.
259
269
.
13.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
,
233
, pp.
289
343
.
14.
Marcus
,
P. S.
,
1984
, “
Simulation of Taylor-Couette Flow: Part1—Numerical Methods and Comparison With Experiment
,”
J. Fluid Mech.
,
146
, pp.
45
64
.
15.
Yates
,
F.
,
1935
, “
Complex Experiments
,”
J. R. Statist. Soc. Suppl.
,
2
, pp.
181
181
.
You do not currently have access to this content.