Heat transfer in a rotating rib-roughened duct was simulated with a Lagrangian dynamic subgrid-scale model. The angled 60 deg rib induced a pair of strong vortices in the stationary condition, and the heat transfer and the friction factor were larger than the 90 deg rib case. In the rotating condition, the high heat transfer areas at the midpoint between ribs and in front of the rib were observed only on the trailing wall. The friction factor and overall Nusselt number were decreased by the duct rotation for 60 deg rib case, although they were increased for 90 deg rib case.
Issue Section:
Forced Convection
1.
Lakshminarayana, B., 1996, Fluid Dynamics and Heat Transfer of Turbomachinery, Chap. 7, John Wiley & Sons Inc., New York, pp. 597–721.
2.
Mochizuki, S., Beier, M., Murata, A., Okamura, T., and Hashidate, Y., 1996, “Detailed Measurement of Convective Heat Transfer in Rotating Two-Pass Rib-Roughened Coolant Channels,” ASME Paper 96-TA-6.
3.
Mochizuki
, S.
, Murata
, A.
, and Fukunaga
, M.
, 1997
, “Effects of Rib Arrangements on Pressure drop and Heat Transfer in a Rib-Roughened Channel with a Sharp 180 deg Turn
,” ASME J. Turbomach.
, 119
, pp. 610
–616
.4.
Murata
, A.
, Mochizuki
, S.
, and Takahashi
, T.
, 1999
, “Local Heat Transfer Measurements of an Orthogonally Rotating Square Duct with Angled Rib Turbulators
,” Int. J. Heat Mass Transf.
, 42
, pp. 3047
–3056
.5.
Chandra
, P. R.
, Han
, J. C.
, and Lau
, S. C.
, 1988
, “Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel
,” ASME J. Heat Transfer
, 110
, pp. 233
–241
.6.
Hirota, M., Fujita, H., Yokosawa, H., Nakayama, T., and Tanaka, T., 1998, “Developing Heat/Mass Transfer in Low-Aspect-Ratio Rectangular Channels with Ribbed Walls,” Heat Transfer 1998, Proc. of 11th International Heat Transf. Conf., Taylor & Francis, 5, pp. 363–368.
7.
Rau, G., Cakan, M., Moeller, D., and Arts, T., 1996, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,” ASME Paper 96-GT-541.
8.
Baughn, J. W., and Yan, X., 1992, “Local Heat Transfer Measurements in Square Ducts with Transverse Ribs,” Enhanced Heat Transfer ASME, HTD-Vol. 202, pp. 1–7.
9.
Ekkad
, S. V.
, and Han
, J. C.
, 1997
, “Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,” Int. J. Heat Mass Transf.
, 40
, No. 11
, pp. 2525
–2537
.10.
Prakash
, C.
, and Zerkle
, R.
, 1995
, “Prediction of Turbulent Flow and Heat Transfer in a Ribbed Rectangular Duct with and without Rotation
,” ASME J. Turbomach.
, 117
, pp. 255
–264
.11.
Stephens, M. A., Shih, T. I.-P., and Civinskas, K. C., 1995, “Effects of Inclined Rounded Ribs on Flow and Heat Transfer in a Square Duct,” AIAA Paper 95–2115.
12.
Banhoff, B., Tomm, U., and Johnson, B. V., 1996, “Heat Transfer Predictions for U-shaped Coolant Channels with Skewed Ribs and with Smooth Walls,” ASME Paper 96-TA-7.
13.
Launder
, B. E.
, Tselepidakis
, D. P.
, and Younis
, B. A.
, 1987
, “A Second-Moment Closure Study of Rotating Channel Flow
,” J. Fluid Mech.
, 183
, pp. 63
–75
.14.
Huser
, A.
, and Biringen
, S.
, 1993
, “Direct Numerical Simulation of Turbulent Flow in a Square Duct
,” J. Fluid Mech.
, 257
, pp. 65
–95
.15.
Gavrilakis
, S.
, 1992
, “Numerical Simulation of Low Reynolds Number Turbulent Flow Through a Straight Square Duct
,” J. Fluid Mech.
, 244
, pp. 101
–129
.16.
Madabhushi
, R. K.
, and Vanka
, S. P.
, 1991
, “Large Eddy Simulation of Turbulence-Driven Secondary Flow in a Square Duct
,” Phys. Fluids A
, 3
, No. 11
, pp. 2734
–2745
.17.
Kajishima
, T.
, Miyake
, Y.
, and Nishimoto
, T.
, 1991
, “Large Eddy Simulation of Turbulent Flow in a Square Duct
,” Trans. Jpn. Soc. Mech. Eng., Ser. B
, 57
, No. 540
, pp. 2530
–2537
.18.
Murata
, A.
, and Mochizuki
, S.
, 2000
, “Large Eddy Simulation with a Dynamic Subgrid-Scale Model of Turbulent Heat Transfer in an Orthogonally Rotating Smooth Square Duct
,” Int. J. Transport Phenomena
, 2
, pp. 27
–41
.19.
Murata
, A.
, and Mochizuki
, S.
, 1999
, “Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Smooth Duct
,” Int. J. Heat Mass Transf.
, 42
, pp. 3803
–3814
.20.
Murata, A., and Mochizuki, S., 1998, “Large Eddy Simulation Applied to Internal Forced-Convection Cooling of Gas-Turbine Blades,” Heat Transfer 1998, Proc. of 11th International Heat Transf. Conf., Taylor & Francis, 6, pp. 565–570.
21.
Murata
, A.
, and Mochizuki
, S.
, 1999
, “Large Eddy Simulation with a Dynamic Subgrid-Scale Model of Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct with Transverse Rib Turbulators
,” Int. J. Heat Mass Transf.
, 43
, pp. 1243
–1259
.22.
Taslim
, M. E.
, and Spring
, S. D.
, 1994
, “Effect of Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,” J. Thermophys. Heat Transfer
, 8
, No. 3
, pp. 555
–562
.23.
Korotky, G. J., and Taslim, M. E., 1996, “Rib Heat Transfer Coefficient Measurements, in a Rib-Roughened Square Passage,” ASME Paper 96-GT-356.
24.
Han
, J. C.
, Park
, J. S.
, and Lei
, C. K.
, 1985
, “Heat Transfer Enhancement in Channels With Turbulence Promoters
,” ASME J. Eng. Gas Turbines Power
, 107
, pp. 628
–635
.25.
Patankar
, S. V.
, Liu
, C. H.
, and Sparrow
, E. M.
, 1977
, “Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,” ASME J. Heat Transfer
, 99
, pp. 180
–186
.26.
Kajishima
, T.
, Ohta
, T.
, Okazaki
, K.
, and Miyake
, Y.
, 1998
, “High-Order Finite-Difference Method for Incompressible Flows Using Collocated Grid System
,” Trans. Jpn. Soc. Mech. Eng., Ser. B
, 41
, No. 4
, pp. 830
–839
.27.
Germano
, M.
, Piomelli
, U.
, Moin
, P.
, and Cabot
, W. H.
, 1991
, “A Dynamic Subgrid-Scale Eddy Viscosity Model
,” Phys. Fluids A
, 3
, No. 7
, pp. 1760
–1765
.28.
Lilly
, D. K.
, 1992
, “A Proposed Modification of the Germano Subgrid-Scale Closure Method
,” Phys. Fluids A
, 4
, No. 3
, pp. 633
–635
.29.
Meneveau
, C.
, Lund
, T. S.
, and Cabot
, W. H.
, 1996
, “A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,” J. Fluid Mech.
, 319
, pp. 353
–385
.30.
Moin
, P.
, Squires
, K.
, Cabot
, W.
, and Lee
, S.
, 1991
, “A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,” Phys. Fluids A
, 3
, No. 11
, pp. 2746
–2757
.31.
Harlow
, F. H.
, and Welch
, J. E.
, 1965
, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,” Phys. Fluids
, 8
, No. 12
, pp. 2182
–2189
.32.
Kim
, J.
, and Moin
, P.
, 1985
, “Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,” J. Comput. Phys.
, 59
, pp. 308
–323
.33.
Zang
, Y.
, Street
, R. L.
, and Koseff
, J. R.
, 1994
, “A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,” J. Comput. Phys.
, 114
, pp. 18
–33
.34.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill Inc., New York, p. 316.
35.
Han
, J. C.
, Chandra
, P. R.
, and Lau
, S. C.
, 1988
, “Local Heat/Mass Transfer Distribution Around Sharp 180 deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,” ASME J. Heat Transfer
, 110
, pp. 91
–98
.Copyright © 2001
by ASME
You do not currently have access to this content.