Wide-bandgap silicon carbide (SiC) substrates are needed for fabrication of electronic and optoelectronic devices and circuits that can function under high-temperature, high-power, high-frequency conditions. The bulk growth of SiC single crystal by physical vapor transport (PVT), modified Lely method involves sublimation of a SiC powder charge, mass transfer through an inert gas environment, and condensation on a seed. Temperature distribution in the growth system and growth rate profile on the crystal surface are critical to the quality and size of the grown SiC single crystal. Modeling of SiC growth is considered important for the design of efficient systems and reduction of defect density and micropipes in as-grown crystals. A comprehensive process model for SiC bulk growth has been developed that incorporates the calculations of radio frequency (RF) heating, heat and mass transfer and growth kinetics. The effects of current in the induction coil as well as that of coil position on thermal field and growth rate have been studied in detail. The growth rate has an Arrhenius-type dependence on deposition surface temperature and a linear dependence on the temperature gradient in the growth chamber.

1.
Glass
,
R. C.
,
Henshall
,
D.
,
Tsvetkov
,
V. F.
, and
Carter
,
C. H.
,Jr.
,
1997
, “
SiC Seeded Crystal Growth
,”
Phys. Status Solidi B
,
202
, pp.
149
162
.
2.
Pons
,
M.
,
Blanquet
,
E.
,
Dedulle
,
J. M.
,
Garcon
,
I.
,
Madar
,
R.
, and
Bernard
,
C.
,
1996
, “
Thermodynamic Heat Transfer and Mass Transport Modeling of the Sublimation Growth of Silicon Carbide Crystals
,”
J. Electrochem. Soc.
,
143
, No.
11
, pp.
3727
3735
.
3.
Pons
,
M.
,
Blanquet
,
E.
,
Dedulle
,
J. M.
,
Madar
,
R.
, and
Bernard
,
C.
,
1997
, “
Different Macroscopic Approaches to the Modeling of the Sublimation Growth of SiC Single Crystals
,”
Mater. Sci. Eng., B
,
46
, pp.
308
312
.
4.
Barrett
,
D. L.
,
Seidensticker
,
R. G.
,
Gaida
,
W.
,
Hopkins
,
R. H.
, and
Choyke
,
W. J.
,
1991
, “
SiC Boule Growth by Sublimation Vapor Transport
,”
J. Cryst. Growth
,
109
, pp.
17
23
.
5.
Barrett
,
D. L.
,
McHugh
,
J. P.
,
Hobgood
,
H. M.
,
Hopkins
,
R. H.
,
McMullin
,
P. G.
, and
Clarke
,
R. C.
,
1993
, “
Growth of Large SiC Single Crystals
,”
J. Cryst. Growth
,
128
, pp.
358
362
.
6.
Sasaki
,
M.
,
Nishio
,
Y.
,
Nishina
,
S.
,
Nakashima
,
S.
, and
Harima
,
H.
,
1998
, “
Defect Formation Mechanism of Bulk SiC
,”
Mater. Sci. Forum
,
264–268
, pp.
41
44
.
7.
Lilov
,
S. K.
,
1993
, “
Study of the Equilibrium Processes in the Gas Phase During Silicon Carbide Sublimation
,”
Mater. Sci. Eng., B
,
21
, pp.
65
69
.
8.
Tairov
,
Yu., M.
, and
Tsvetkov
,
V. F.
,
1978
, “
Investigation of Growth Processes of Ingots of Silicon Carbide Single Crystals
,”
J. Cryst. Growth
,
43
, pp.
209
212
.
9.
Tairov
,
Yu., M.
, and
Tsvetkov
,
V. F.
,
1981
, “
General Principles of Growing Large-Size Single Crystals of Various Silicon Carbide Polytypes
,”
J. Cryst. Growth
,
52
, pp.
146
150
.
10.
Hobgood
,
H. M.
,
Barrett
,
D. L.
,
McHugh
,
J. P.
,
Clarke
,
R. C.
,
Sriram
,
S.
,
Burk
,
A. A.
,
Greggi
,
J.
,
Brandt
,
C. D.
,
Hopkins
,
R. H.
, and
Choyke
,
W. J.
,
1994
, “
Large Diameter 6H-SiC for Microwave Device Applications
,”
J. Cryst. Growth
,
137
, pp.
181
186
.
11.
Augustine
,
G.
,
Hobgood
,
H.
,
Balakrishna
,
V.
,
Dunne
,
G.
, and
Hopkins
,
R. H.
,
1997
, “
Physical Vapor Transport Growth and Properties of SiC Monocrystals of 4H Polytype
,”
Phys. Status Solidi B
,
202
, pp.
137
148
.
12.
Tsvetkov
,
V.
,
Glass
,
R.
,
Henshall
,
D.
,
Asbury
,
D.
, and
Carter
,
C. H.
, Jr.
,
1998
, “
SiC Seeded Boule Growth
,”
Mater. Sci. Forum
,
264–268
, pp.
3
8
.
13.
Powell
,
A. R.
,
Wang
,
S.
,
Fechko
,
G.
, and
Brandes
,
G. R.
,
1998
, “
Sublimation Growth of 50 mm Diameter SiC Wafers
,”
Mater. Sci. Forum
,
264–268
, pp.
13
16
.
14.
Dhanraj, G., Huang, X. R., Dudley, M., Prasad, V., and Ma, R.-H., 2001, “Silicon Carbide Crystals: Part I–Growth and Characterization,” Crystal Growth for Modern Technology, K. Byrappa and T. Ohachi, eds., William Andrew/Noyes Publications, NJ (in press).
15.
Hofmann
,
D.
,
Heinze
,
M.
,
Winnacker
,
A.
,
Durst
,
F.
,
Kadinski
,
L.
,
Kaufmann
,
P.
,
Makarov
,
Y.
,
Scha¨fer
,
M.
,
1995
, “
On the Sublimation Growth of SiC Bulk Crystals: Development of a Numerical Process Model
,”
J. Cryst. Growth
,
146
, pp.
214
219
.
16.
Hofmann
,
D.
,
Eckstein
,
R.
,
Ko¨lbl
,
M.
,
Makarov
,
Y.
,
Mu¨ller
,
St. G.
,
Schmitt
,
E.
,
Winnacker
,
A.
,
Rupp
,
R.
,
Stein
,
R.
, and
Vo¨lkl
,
J.
,
1997
, “
SiC-bulk growth by Physical-Vapor Transport and Its Global Modeling
,”
J. Cryst. Growth
,
174
, pp.
669
674
.
17.
Mu¨ller
,
S. G.
,
Eckstein
,
R.
,
Hofmann
,
D.
,
Kadinski
,
L.
,
Kaufmann
,
P.
,
Ko¨lbl
,
M.
, and
Schmitt
,
E.
,
1998
, “
Modeling of the PVT-SiC Bulk Growth Process Taking into Account Global Heat Transfer, Mass Transport and Heat of Crystallization and Results on its Experimental Verification
,”
Mater. Sci. Forum
,
264–268
, pp.
57
60
.
18.
Ma
,
R.-H.
,
Chen
,
Q.-S.
,
Zhang
,
H.
,
Prasad
,
V.
,
Balkas
,
C. M.
, and
Yushin
,
N. K.
,
2000
, “
Modeling of Silicon Carbide Crystal Growth by Physical Vapor Transport Method
,”
J. Cryst. Growth
,
211
, pp.
352
359
.
19.
Chen
,
Q.-S.
,
Zhang
,
H.
,
Prasad
,
V.
,
Balkas
,
C. M.
,
Yushin
,
N. K.
, and
Wang
,
S.
,
2001
, “
Kinetics and Modeling of Sublimation Growth of Silicon Carbide Bulk Crystal
,”
J. Cryst. Growth
,
224
, pp.
101
110
.
20.
Chen, Q.-S., Prasad, V. Zhang, H., and Dudley, M., 2001, “Silicon Carbide Crystals: Part II—Process Physics and Modeling,” Crystal Growth for Modern Technology, K. Byrappa and T. Ohachi, eds., William Andrew/Noyes Publications, NJ, (in press).
21.
Kaldis, E., and Piechotka, M., 1994, “Bulk Crystal Growth by Physical Vapor Transport,” Handbook of Crystal Growth, Vol. 2, D. T. J. Hurle, ed., pp. 615–658.
22.
Chen
,
Q.-S.
,
Prasad
,
V.
, and
Chatterjee
,
A.
,
1999
, “
Modeling of Fluid Flow and Heat Transfer in a Hydrothermal Crystal Growth System: Use of Fluid-Superposed Porous Layer Theory
,”
J. Heat Transfer
,
121
, pp.
1049
1058
.
23.
Chen, Q.-S., Zhang, H., Prasad, V., Balkas, C. M., and Yushin, N. K., 1999, “A System Model for Silicon Carbide Crystal Growth by Physical Vapor Transport Method,” ASME Proc. 33rd National Heat Transfer Conference, HTD, NHTC99-222.
24.
Kraus, J. D., and Carver, K. R., 1973, Electromagnetics, McGraw-Hill, New York.
25.
Bı´ro´
,
O.
, and
Preis
,
K.
,
1989
, “
On the Use of the Magnetic Vector Potential in the Finite Element Analysis of Three-Dimensional Eddy Currents
,”
IEEE Trans. Magn.
,
25
, pp.
3145
3159
.
26.
Selder
,
M.
,
Kadinski
,
L.
,
Makarov
,
Yu.
,
Durst
,
F.
,
Wellmann
,
P.
,
Straubinger
,
T.
,
Hofmann
,
D.
,
Karpov
,
S.
, and
Ramm
,
M.
,
2000
, “
Global Numerical Simulation of Heat and Mass Transfer for SiC Bulk Crystal Growth by PVT
,”
J. Cryst. Growth
,
211
, pp.
333
338
.
27.
Naraghi
,
M. H. N.
, and
Chung
,
B. T. F.
,
1984
, “
A Stochastic Approach for Analysis of Radiative Heat Transfer in Enclosures with Non-Participating Media
,”
J. Heat Transfer
,
106
, pp.
690
698
.
28.
Nunes
,
E. M.
, and
Naraghi
,
M. H. N.
,
1998
, “
Numerical Model for Radiative Heat Transfer Analysis in Arbitrarily Shaped Axisymmetric Enclosures with Gaseous Media
,”
Numer. Heat Transfer, Part A
,
33
, pp.
495
513
.
29.
Zhang
,
H.
,
Prasad
,
V.
, and
Moallemi
,
M. K.
,
1996
, “
Numerical Algorithm Using Multizone Adaptive Grid Generation for Multiphase Transport Processes with Moving and Free Boundaries
,”
Numer. Heat Transfer, Part B
,
29
, pp.
399
421
.
30.
Zhang
,
H.
, and
Prasad
,
V.
,
1997
, “
An Advanced Numerical Scheme for Materials Process Modeling
,”
Computer Modeling and Simulation in Engineering
,
2
, pp.
322
343
.
31.
Modest
,
M. F.
,
1988
, “
Radiative Shape Factors between Differential Ring Elements on Concentric Axisymmetric Bodies
,”
J. Thermophys. Heat Transfer
,
2
, pp.
86
88
.
32.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere Publishing, Bristol, PA.
33.
Drowart, J., and De Maria, G., 1960, Silicon Carbide, Pergamon, Oxford, p. 16.
34.
Kaneko
,
T.
,
1993
, “
Growth Kinetics of Vapor-grown SiC
,”
J. Cryst. Growth
,
128
, pp.
354
357
.
35.
Kansa
,
E. J.
,
Perlee
,
H. E.
, and
Chaiken
,
R. F.
,
1977
, “
Mathematical Model of Wood Pyrolysis Including Internal Forced Convection
,”
Combust. Flame
,
29
, pp.
311
324
.
36.
Roy
,
A.
,
Mackintosh
,
B.
,
Kalejs
,
J. P.
,
Chen
,
Q.-S.
,
Zhang
,
H.
, and
Prasad
,
V.
,
2000
, “
A Numerical Model for Inductively Heated Cylindrical Silicon Tube Growth System
,”
J. Cryst. Growth
,
211
, pp.
365
371
.
37.
Anikin
,
M.
, and
Madar
,
R.
,
1997
, “
Temperature Gradient Controlled SiC Crystal Growth
,”
Mater. Sci. Eng.
,
B46
, pp.
278
286
.
38.
Balkas
,
C. M.
,
Maltsev
,
A. A.
,
Roth
,
M. D.
, and
Yushin
,
N. K.
,
2000
, “
Role of Temperature Gradient in Bulk Crystal Growth
,”
Mater. Sci. Forum
,
338–342
, pp.
79
82
.
You do not currently have access to this content.