In the present work, an unified derivation of simple evaporation models used in spray simulation is described and a new evaporation model is formulated. In the model, the Nusselt number, Sherwood number, and evaporation mass flux are derived using the traditional film theory. However, instead of determining the film thicknesses using the Nusselt and Sherwood numbers derived in the absence of high mass transfer rate, the film thicknesses are calculated from those derived from the fully numerical solutions which represent the realistic heat and mass transfer processes around a droplet. The model predictions are compared with the fully numerical solutions.

1.
Law
,
C. K.
,
1976
, “
Unsteady Droplet Vaporization with Droplet Heating
,”
Combust. Flame
,
26
, pp.
17
22
.
2.
Law
,
C. K.
, and
Sirignano
,
W. A.
,
1977
, “
Unsteady Droplet Combustion with Droplet Heating-II: Conduction Limit
,”
Combust. Flame
,
28
, pp.
175
186
.
3.
Talley, D. G., and Yao, S. C., 1986, “A Semi-Empirical Approach to Thermal and Composition Transients inside Vaporizing Fuel Droplets,” Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 609–616.
4.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporatization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1605
1618
.
5.
Faeth
,
G. M.
,
1977
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
,
3
, pp.
191
224
.
6.
Bird, R. B., Stewart, W. E., and Lightfoot, E. M., 1960, Transport Phenomena, John Wiley, New York.
7.
Frank-Kamenetskii, D. A., 1969, Diffusion and Heat Transfer in Chemical Kinetics, second edition, Plenum Press, New York.
8.
Abramzon, B., and Sirignano, W. A., 1987, “Approximate Theory of a Single Droplet Vaporization in a Convective Field: Effects of Variable Properties, Stefan Flow and Transient Liquid Heating,” Proc. 2nd ASME-JSME Thermal Engng. Joint Conf., Honolulu, Hawaii, 1, pp. 11–18.
9.
Haywood
,
R. J.
,
Nafziger
,
R.
, and
Renksizbulut
,
M.
,
1989
, “
A Detailed Examination of Gas and Liquid Phase Transient Processes in Convective Droplet Evaporation
,”
ASME J. Heat Transfer
,
111
, pp.
495
502
.
10.
Chiang
,
C. H.
,
Raju
,
M. S.
, and
Sirignano
,
W. A.
,
1992
, “
Numerical Analysis of Convecting, Vaporizing Fuel Droplet with Variable Properties
,”
Int. J. Heat Mass Transf.
,
35
, pp.
1307
1324
.
11.
Mao
,
C. P.
,
Szekely
,
G. A.
, Jr.
, and
Faeth
,
G. M.
,
1980
, “
Evaluation of a Locally Homogeneous Flow Model of Spray Combustion
,”
J. Energy
,
4
, pp.
78
87
.
12.
Aggarwal
,
S. K.
, and
Chitre
,
S.
,
1991
, “
Computations of Turbulent Evaporating Sprays
,”
J. Propul. Power
,
7
, pp.
213
220
.
13.
Park
,
T. W.
, and
Aggarwal
,
S. K.
,
1995
, “
Gravity Effects on the Dynamics of Evaporating Droplets in a Heated Jet
,”
J. of Propulsion and Power
,
11
, pp.
519
528
.
14.
Klingsporn
,
M.
, and
Renz
,
U.
,
1994
, “
Vaporization of a Binary Unsteady Spray at High Temperature and High Pressure
,”
Int. J. Heat Mass Transf.
,
37
, (suppl.1), pp.
265
272
.
15.
Sirignano, W. A., 1999, Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, Cambridge.
16.
Yao, G. F., Ghiaasiaan, S. M., Abdel-Khalik, S. I., Schoonover, K., “Computational Modeling of Spray Cooling in Vapor Conditioning Equipment,” Proc. Int. Symp. on Computational Technologies for Fluid/Thermal/Chemical/Systems with Industrial Applications, Boston, MA. V. V. Kidriavtsev, C. R. Kleijn, and S. Kawano, eds., ASME PVP-Vol. 397-2, pp. 107–116.
You do not currently have access to this content.