The present study is conducted to investigate the frost formation on a cold plate in atmospheric air flow by means of experimental and theoretical methods. In order to provide observations for the early stage of the frost growth process, a microscopic image system is used to record the pattern and the thickness of the frost layer per five seconds after the onset of frost formation. In this study, a multiple-step ascending frost growth pattern caused by melting of frost crystals at the frost surface has been observed. Effects of velocity, temperature and relative humidity of air (V,Ta, and ϕ) are studied, and the surface temperature of the cold plate Tw is also varied. The considered ranges of these dominant variables are: 2V13 m/s, 20Ta35°C, 40 percent ⩽ϕ⩽80 percent, and 13Tw2°C. The theoretical model presented by Cheng and Cheng [22] for predicting the frost growth rate during the frost layer growth period is verified. Results show that the predictions of frost growth rate by the model agree with the experiment data, especially for the frost layer growth period.

1.
Emery, A. F., and Siegel, B. L., 1990, “Experimental Measurements of the Effects of Frost Formation on Heat Exchanger Performance,” Proceedings of AIAA/ASME Thermophysics and Heat Transfer Conference, Heat and Mass Transfer in Frost and Ice Packed Beds and Environmental Discharges, Armilli, R. V., Beasley, D. E., and Sengupta, S., eds., ASME HTD-Vol. 139, pp. 1–7.
2.
Su, Y. P., 2001, “Study of Thermofluid Characteristics of Plate and Louvered Finned-and-Tube Heat Exchangers under Frosting Conditions,” Master Thesis (advisor: Yan, W. M.), Huafan University, Taipei, Taiwan, June 2001.
3.
Yonko
,
J. D.
, and
Sepsy
,
C. F.
,
1967
, “
An Investigation of the Thermal Conductivity of Frost While Forming on a Flat Horizontal Plate
,”
ASHRAE Trans.
,
73, Part I
, pp.
I1.1–I1.9
I1.1–I1.9
.
4.
Schneider
,
H. W.
,
1978
, “
Equation of the Growth Rate of Frost Forming on Cooled Surface
,”
Int. J. Heat Mass Transf.
,
21
, pp.
1019
1024
.
5.
S¸ahin
,
A. Z.
,
1994
, “
An Experimental Study on the Initiation and Growth of Frost Formation on a Horizontal Plate
,”
Exp. Heat Transfer
,
7
, pp.
101
119
.
6.
Lu¨er
,
A.
, and
Beer
,
H.
,
2000
, “
Frost Deposition in a Parallel Plate Channel under Laminar Flow Conditions
,”
Int. J. Therm. Sci.
,
39
, pp.
85
95
.
7.
O’Neal
,
D. L.
, and
Tree
,
D. R.
,
1984
, “
Measurement of Frost Growth and Density in a Parallel Plate Geometry
,”
ASHRAE Trans.
,
90
, pp.
278
290
.
8.
O’Neal
,
D. L.
, and
Tree
,
D. R.
,
1985
, “
A Review of Frost Formation in Simple Geometries
,”
ASHRAE Trans.
,
91
, pp.
267
281
.
9.
Brian
,
P. L. T.
,
Reid
,
R. C.
, and
Shah
,
Y. T.
,
1970
, “
Frost Deposition on Cold Surfaces
,”
Ind. Eng. Chem. Fundam.
,
9
, pp.
375
380
.
10.
Jones
,
B. W.
, and
Parker
,
J. D.
,
1975
, “
Frost Formation with Varying Environmental Parameters
,”
ASME J. Heat Transfer
,
97
, pp.
255
259
.
11.
Sami
,
S. M.
, and
Duong
,
T.
,
1989
, “
Mass and Heat Transfer during Frost Growth
,”
ASHRAE Trans.
,
95
, pp.
158
165
.
12.
Hayashi
,
Y.
,
Aoki
,
A.
,
Adachi
,
S.
, and
Hori
,
K.
,
1977
, “
Study of Frost Properties Correlating with Frost Formation Types
,”
ASME J. Heat Transfer
,
99
, pp.
239
245
.
13.
O¨stin
,
R.
, and
Andersson
,
S.
,
1991
, “
Frost Growth Parameters in a Forced Air Stream
,”
Int. J. Heat Mass Transf.
,
34
, pp.
1009
1017
.
14.
Meng, F., Gao, W., and Pan Y., 1987, “Growth Rate of Frost Formation Through Sublimation—A Porous Medium Physical Model for Frost Layer,” Proceedings of the 1985 International Symposium on Heat Transfer, Heat Transfer Science and Technology, Wang, B. X., ed., Hemisphere, Washington, pp. 584–593.
15.
Sami
,
S. M.
, and
Duong
,
T.
,
1989
, “
Mass and Heat Transfer during Frost Growth
,”
ASHRAE Trans.
,
95
, pp.
158
165
.
16.
Padki
,
M. M.
,
Sherif
,
S. A.
, and
Nelson
,
R. M.
,
1989
, “
A Simple Method for Modeling the Frost Formation Phenomenon in Different Geometries
,”
ASHRAE Trans.
,
95
, pp.
1127
1137
.
17.
Sherif
,
S. A.
,
Raju
,
S. P.
,
Padki
,
M. M.
, and
Chan
,
A. B.
,
1993
, “
A Semi-Empirical Transient Method for Modeling Frost Formation on a Flat Plate
,”
Int. J. Refrig.
,
16
, pp.
321
329
.
18.
Tao
,
Y.-X.
, and
Besant
,
R. W.
,
1993
, “
Prediction of Spatial and Temporal Distributions of Frost Growth on a Flat Plate Under Forced Convection
,”
ASME J. Heat Transfer
,
115
, pp.
278
281
.
19.
Tao
,
Y.-X.
,
Besant
,
R. W.
, and
Rezkallah
,
K. S.
,
1993
, “
A Mathematical Model for Predicting the Densification and Growth of Frost on a Flat Plate
,”
Int. J. Heat Mass Transf.
,
30
, pp.
353
363
.
20.
Chen
,
H.
,
Thomas
,
L.
, and
Besant
,
R. W.
,
2000
, “
Modeling Frost Characteristics on Heat Exchanger Fins: Part I. Numerical Model
,”
ASHRAE Trans.
,
106
, pp.
357
367
.
21.
Chen
,
H.
,
Thomas
,
L.
, and
Besant
,
R. W.
,
2000
, “
Modeling Frost Characteristics on Heat Exchanger Fins: Part II. Model Validation and Limitation
,”
ASHRAE Trans.
,
106
, pp.
368
376
.
22.
Cheng
,
C. H.
, and
Cheng
,
Y. C.
,
2001
, “
Predictions of Frost Growth on a Cold Plate in Atmospheric Air
,”
Int. Commun. Heat Mass Transfer
,
28
, pp.
953
962
.
23.
Fang, C. S., 1997, “Predictions of Frost Growth and Heat Transfer Coefficient on Surface of an Oscillating Cylinder,” Master thesis, (advisor: Cheng, C. H.), Tatung University, Taipei, Taiwan, June 1997.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
26.
Cheng
,
C. H.
,
Chen
,
H. N.
, and
Aung
,
W.
,
1997
, “
Experimental Study of the Effect of Transverse Oscillation on Convection Heat Transfer from a Circular Cylinder
,”
ASME J. Heat Transfer
,
119
, pp.
474
482
.
You do not currently have access to this content.