Estimation of the transverse thermal conductivity of continuous fiber reinforced composites containing a random fiber distribution with imperfect interfaces was performed using finite element analysis. FEA results were compared with the classical solution of Hasselman and Johnson to determine limits of applicability. The results show that the Hasselman and Johnson model predicts the effective thermal conductivity within 3 percent of the numerical estimates for interfacial conductance values of 1×1021×103W/m2K, fiber-matrix conductivity ratios between 1 and 100, and fiber volume fractions up to 50 percent which are properties typical of ceramic composites. The results show that the applicability of the classical dilute concentration model can not be determined by constituent volume fraction, but by the degree of interaction between the microstructural heterogeneities.

1.
Hasselman
,
D. P. H.
, and
Johnson
,
L. F.
,
1987
, “
Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance
,”
J. Compos. Mater.
,
21
, pp.
508
515
.
2.
Graham, S., 1999, “The Effective Thermal Conductivity of Damaged Composites,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
3.
Lord Rayleigh
,
W.
1892
, “
On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium
,”
Philos. Mag.
,
34
, pp.
481
502
.
4.
Cha, W., and Beck, J. V., 1989, “Numerical Study of Thermal Conductivity of Fiber-Matrix Composite Materials,” in Design and Manufacturing of Advanced Composites, ASM International, pp. 219–225.
5.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
, pp.
79
95
.
6.
Donaldson, K. Y., Bhatt, H., and Hasselman, D. P. H., 1993, “Role of Interfacial Gaseous Heat Transfer and Percolation in the Effective Thermal Conductivity of Two Uniaxial Carbon-Fiber-Reinforced Glass Matrix Composites,” Ceramic Engineering and Science Proceedings, 14, published by The American Ceramic Society, Westerville, OH, pp. 335–340.
7.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials-A Survey
,”
ASME J. Appl. Mech.
,
50
, pp.
481
505
.
8.
Alzebdeh, K., Jasiuk, I., and Ostoja-Starzewski, M., 1998, “Scale and Boundary Condition Effects in Elasticity and Damage Mechanics,” in Damage Mechanics Studies in Applied Mechanics, J. W. Ju, J.-L. Chaboche, and G. Voyiadjis, eds., Elsevier Science, pp. 65–80.
9.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
, pp.
2429
2455
.
10.
Lacy, T., 1998, “Distribution Effects In Damage Mechanics,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
11.
Ostoja-Starzewski
,
M.
, and
Schulte
,
J.
,
1996
, “
Bounding of Effective Thermal Conductivities of Multiscale Materials by Essential and Natural Boundary Conditions
,”
Phys. Rev. B
,
54
, pp.
278
285
.
12.
Ostoja-Starzewski
,
M.
,
Jasiuk
,
I.
,
Wang
,
W.
, and
Alzebdeh
,
K.
,
1996
, “
Composites With Functionally Graded Interphases: Mesocontinuum Concept and Effective Transverse Conductivity
,”
Acta Mater.
,
44
, pp.
2057
2066
.
13.
Torquato
,
S.
,
1987
, “
Thermal Conductivity of Disordered Heterogeneous Media From the Microstructure
,”
Reviews in Chemical Engineering
,
4
, pp.
151
204
.
14.
Torquato
,
S.
,
1991
, “
Random Heterogeneous Media. Microstructures and Improved Bounds on Effective Properties
,”
Appl. Mech. Rev.
,
44
, pp.
37
37
.
15.
Pitchumani
,
R.
, and
Yao
,
S.
,
1991
, “
Correlation of Thermal Conductivities of Unidirectional Fibrous Composites Using Local Fractal Techniques
,”
ASME J. Heat Transfer
,
113
, pp.
788
796
.
16.
Bhatt
,
H.
,
Donaldson
,
K.
, and
Hasselman
,
D. P. H.
,
1990
, “
Role of the Interfacial Thermal Barrier in the Effective Thermal Diffusivity/Conductivity of SiC-Fiber-Reinforced Reaction-Bonded Silicon Nitride
,”
J. Am. Ceram. Soc.
,
73
, pp.
312
316
.
17.
Bhatt
,
H.
,
Donaldson
,
K.
,
Hasselman
,
D. P. H.
, and
Bhatt
,
R.
,
1992
, “
Role of Interfacial Carbon Layer in the Thermal Diffusivity/Conductivity of Silicon Carbide Fiber-Reinforced Reaction-Bonded Silicon Nitride Matrix Composites
,”
J. Am. Ceram. Soc.
,
75
, pp.
334
340
.
18.
Depalma, C. M., Bhatt, H., Donaldson, K. Y., Hasselman, D. P. H., Thomas, J. R., and Hurst, E. P., 1994, “Role of Interfacial Thermal Barrier in the Measurement of the Longitudinal Thermal Conductivity of a Uniaxial Fiber-Reinforced Composite by the Flash Method,” Thermal Conductivity 22, T. Tong, ed., Technomic Publishing Co., Lancaster, PA.
19.
Hasselman
,
D. P. H.
,
Donaldson
,
K.
,
Thomas
,
J.
, and
Brennan
,
J.
,
1996
, “
Thermal Conductivity of Vapor-Liquid-Solid and Vapor-Solid Silicon Carbide Whisker-Reinforced Lithium Aluminosilicate Glass-Ceramic Composites
,”
J. Am. Ceram. Soc.
,
79
, pp.
742
748
.
20.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka=s Theory in Composite Materials
,”
Mech. Mater.
,
6
, pp.
147
157
.
You do not currently have access to this content.