Abstract

Scale deposition on the heat transfer surfaces from water containing dissolved salts considerably reduces fuel economy and performance of heat transfer equipment. This problem is more serious during nucleate boiling due to the mechanisms of bubble formation and detachment. Using a precision pool boiling test apparatus, the effects of heat flux and calcium sulfate concentration on heat transfer coefficient and formation and growth of deposits are investigated. The transient change in heat transfer is closely related to wick boiling, and the associated changes in bubble departure diameter and bubble site density. A physically sound prediction model was developed for the prediction of heat transfer coefficients as a function of time during deposition processes. Based on comparison with experimental data over a wide range of foulant concentrations and heat fluxes, the model is considered to be sufficiently accurate for practical application.

References

1.
Langelier
,
W. F.
,
Cadwell
,
D. H.
, and
Lawrence
,
W. B.
,
1957
, “
Scale Control in Seawater Distillation Equipment
,”
Ind. Eng. Chem.
,
49
, pp.
457
465
.
2.
O’Callaghan, M. G., 1986, Heat Exchanger Sourcebook, Hemisphere Publishing, Washington, D.C.
3.
Müller-Steinhagen, H., Jamialahmadi, M., and Robson, B., 1994, “Mitigation of Scale Formation During the Bayer Process—Measurements at the Alcoa of Australia Refinery in Kwinana,” Light Metals, Proceedings of the 1994 Light Metals Conference, pp. 121–127.
4.
Behbahani, M. R., Jamialahmadi, M., and Müller-Steinhagen, H., 2002, “Heat Transfer in Phosphoric Acid Evaporators Under Clean and Fouling Operating Conditions,” Heat Exchanger Workshop, Rabbat., Morocco.
5.
Müller-Steinhagen, H., 1993, “Fouling: The Ultimate Challenge for Heat Exchanger Design,” 6th International Symposium on Transport Phenomena in Thermal Engineering, South Korea, pp. 1–13.
6.
Sanatgar
,
H.
, and
Somerscales
,
E. F. C.
,
1991
, “
Account for Fouling in Heat Exchanger Design
,”
Chem. Eng. Process.
,
14
, pp.
53
59
.
7.
Jamialahmadi
,
M.
, and
Müller-Steinhagen
,
H.
,
1993
, “
Scale Formation During Nucleate Boiling—A Review
,”
Journal of Corrosion Reviews
,
XI
(
1–2
), pp.
25
54
.
8.
Bott, T. R., 1995, Chemical Engineering Monographs 26: Fouling of Heat Exchangers, Elsevier Science.
9.
Marshal
,
W. L.
, and
Slusher
,
R.
,
1964
, “
Aqueous Systems at High Temperature
,”
J. Chem. Eng. Data
,
9
, pp.
187
191
.
10.
Najibi, H., 1996, “Heat Transfer and Heat Transfer Fouling During Subcooled Boiling of Hard Water,” Ph.D. Thesis University of Surrey, UK.
11.
Wenzel, U., 1992, “Saturated Pool Boiling and Subcooled Flow Boiling of Mixtures,” Ph.D. thesis, University of Auckland, New Zealand.
12.
Gorenflo
,
D.
,
2001
, “
State of the Art in Pool Boiling Heat Transfer of New Refrigerants
,”
Int. J. Refrig.
,
24
, pp.
6
14
.
13.
Thome
,
J. R.
, and
Shakir
,
S.
,
1987
, “
A New Correlation for Nucleate Pool Boiling of Aqueous Mixtures
,”
AIChE Symp. Ser.
,
83
(
257
), pp.
46
51
.
14.
Van Wijk
,
W. R.
,
Vos
,
A. S.
, and
Van Stralen
,
J. D.
,
1956
, “
Heat Transfer to Boiling of Binary Liquid Mixtures
,”
Chem. Eng. Sci.
,
11
, pp.
68
80
.
15.
Schlünder
,
E. U.
,
1983
, “
Heat Transfer in Nucleate Boiling of Mixtures
,”
Int. Chem. Eng.
,
23
, pp.
589
599
.
16.
Schmitt
,
D. W.
,
1987
, “
Heat Transfer in Boiling of Multicomponent Mixtures
,”
Chem. Eng. Technol.
,
10
, pp.
242
248
.
17.
Wadekar, V. V., Hills, P. D., and Mattes, J., 1997, “Mixture Effect in Boiling of Salt Solutions,” Heat Transfer—Baltimore, AIChE Symposium Series, 93, pp. 233–238.
18.
Jamialahmadi
,
M.
,
Helalizadeh
,
A.
, and
Müller-Steinhagen
,
H.
,
2004
, “
Pool Boiling Heat Transfer to Electrolyte Solutions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
729
742
.
19.
Mortimer, C. E., 1986, Chemistry, 6th edition, Wadsworth Publishing Company.
20.
Najibi
,
S. H.
,
Müller-Steinhagen
,
H.
, and
Jamialahmadi
,
M.
,
1996
, “
Boiling and Non-Boiling Heat Transfer to Electrolyte Solutions
,”
Heat Transfer Eng.
,
17
, pp.
46
63
.
21.
Stephan, K., and Preusser, P., 1979, “Wärmübergang und maximale Wämestromdiche beim Behältersieden binärer und ternärer Flüssigkeitsgemische,” Chem. Ing. Tech., MS 649/79.
22.
Jamialahmadi
,
M.
,
Blöchl
,
R.
, and
Müller-Steinhagen
,
H.
,
1989
, “
Bubble Dynamics and Scale Formation During Boiling of Aqueous Calcium Sulfate Solutions
,”
Chem. Eng. Process.
,
26
, pp.
15
26
.
23.
Najibi
,
S. H.
,
Müller-Steinhagen
,
H.
, and
Jamialahmadi
,
M.
,
1997
, “
Calcium Sulphate Scale Formation During Subcooled Flow Boiling
,”
Chem. Eng. Sci.
,
52
, pp.
1265
1284
.
24.
Krause, 1986, “Fouling an Wärmeübertragungsflächen durch Kristallisation und Sedimentbildung,” VDI-Forschungsheft, p. 637.
25.
Bohnet
,
M.
,
1987
, “
Fouling of Heat Transfer Surfaces
,”
Chem. Eng. Technol.
,
10
, pp.
113
125
.
26.
Lammers, J., 1972, “Zur Kristallisation von Calciumsulfat bei der Verkrustung von Heizflächen,” Dissertation, TU Berlin.
27.
Mori
,
H.
,
Nakamura
,
M.
, and
Toyama
,
S.
,
1996
, “
Crystallization Fouling of Calcium Sulfate Di-Hydrate on Heat Transfer Surface
,”
J. Chem. Eng. Jpn.
,
29
, pp.
166
173
.
28.
Helalizadeh, 2002, “Mixed Salt Crystallization Fouling,” Ph.D. thesis, Department of Chemical and Process Engineering, University of Surrey, UK.
29.
Moghadasi, J., 2002, “Particle Movement and Scale Formation in Porous Media,” Ph.D. thesis, Department of Chemical and Process Engineering, University of Surrey, UK.
30.
Vares, V., Kruus, R., Kjaar, H., and Mikk, I., 1977, “An Investigation of Thermal Conductivity of Inner Deposits on Boiler Tubes at 300–500°C,” Transactions of the Tallin Polytechnic Institute, No. 416 (in Russian).
31.
Haller, K. H., Lee, R. A., and Slotnik, J. S., 1971, “Heat Transfer and Friction Characteristics of Porous Magnetite Layers in Once-Through Boilers,” Tech. Paper (Babcock Wilcox) TPI-40, BR-494 (presented to ASME Winter Annual Meeting, Washington).
32.
Chenoweth, J. M., 1987, “General Design of Heat Exchangers for Fouling Conditions,” Proc. NATO Advanced Study Inst. On Advances in Fouling Science and Technology, Alvor, Portugal.
33.
McBeth, R. V., 1971, “Boiling on Surfaces Overlayed With a Porous Deposit: Heat Transfer Rate Obtainable by Capillary Action,” AEEW-711.
34.
Levenspiel, O., 1972, Chemical Reaction Engineering, 2nd Ed., New York Wiley.
35.
Treybal, R. E., 1980, Mass Transfer Operations, Third edition, McGraw-Hill Book Company.
36.
Najibi
,
S. H.
,
Müller-Steinhagen
,
H.
, and
Jamialahmadi
,
M.
,
1997
, “
Calcium Carbonate Scale Formation During Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
119
, pp.
1
9
.
You do not currently have access to this content.