This paper presents a discontinuous finite element method for the numerical solution of internal thermal radiation problems in three-dimensional (3D) geometries using an unstructured mesh of mixed elements. Mathematical formulation, numerical implementation, and computational details are given. The different domain discretization methods are presented, and a new angular space discretization is also given. Numerical examples are presented for 3D radiative transfer in emitting, absorbing, and scattering media. Computed results compare well with analytical solutions whenever available. The localized formulation intrinsic in discontinuous finite elements is considered particularly useful for computational radiation heat transfer in participating media.

1.
Modest
,
M. F.
, 1993,
Radiative Heat Transfer
.
McGraw-Hill
, New York.
2.
Reed
,
W. H.
, and
Hill
,
T. R.
, 1973, “
Triangular Mesh Methods for the Neutron Transport Equation
,” Tech. Report LA-UR-73-479,
Los Alamos Scientific Laboratory
.
3.
Li
,
B. Q.
, 2005,
Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
,
Springer-Verlag
, London.
4.
Cui
,
X.
, and
Li
,
B. Q.
, 2004, “
A Discontinuous Finite Element Formulation for Internal Radiation Problems
,”
Numer. Heat Transfer, Part B
1040-7790,
46
, pp.
223
242
.
5.
Ai
,
X.
, and
Li
,
B. Q.
, 2004, “
A Discontinuous Finite Element Method for Hyperbolic Thermal Wave Problems
,”
Eng. Comput.
0264-4401,
21
, pp.
577
597
.
6.
Chai
,
J. C.
, and
Patankar
,
S. V.
, 2000, “
Finite Volume Method For Radiation Heat Transfer
,”
Advances in Numerical Heat Transfer
,
W. J.
Minkowycz
, and
E. M.
Sparrow
, eds.,
Taylor & Francis
, New York, Vol.
2
, Chap. 4.
7.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosure with Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
8.
Moder
,
J. P.
,
Kumar
,
G. N.
, and
Chai
,
J. C.
, 2000, “
An Unstructured-Grid Radiative Heat Transfer Module for the National Combustion Code
,”
38th Aerospace Sciences Meeting & Exhibit
, Reno, NV.
9.
Oden
,
J. T.
,
Babuka
,
I.
, and
Baumann
,
C.
, 1998, “
A Discontinuous hp Finite Element Method for Diffusion Problems
,”
J. Comput. Phys.
0021-9991,
146
, pp.
491
519
.
10.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
0887-8722,
12
, pp.
313
321
.
11.
Kim
,
T. K.
, and
Lee
,
H.
, 1998, “
Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1711
1721
.
12.
Wiscombe
,
W. J.
, 1980, “
Improved Mie Scattering Algorithms
,”
Appl. Opt.
0003-6935,
19
, pp.
1505
1509
.
13.
Özisik
,
M. N.
, 1973,
Radiative Transfer
,
Wiley-Interscience
, New York.
14.
Siegel
,
R.
, and
Howell
,
J. R.
, 1992,
Thermal Radiation Heat Transfer
, 3rd Edition,
Hemisphere
, Washington, DC.
15.
Kim
,
S. H.
, and
Huh
,
K. Y.
, 2000, “
A New Angular Discretization Scheme of the Finite Volume Method for 3-D Radiative Heat Transfer in Absorbing, Emitting and Anisotropically Scattering Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1233
1242
.
You do not currently have access to this content.