The objective of this review is to provide a summary of modeling and experimental research efforts on transport phenomena in proton exchange membrane fuel cells (PEMFCs). Several representative PEMFC models and experimental studies in macro and micro PEMFCs are selected for discussion. No attempt is made to examine all the models or experimental studies, but rather the focus is to elucidate the macro-homogeneous modeling methodologies and representative experimental results. Since the transport phenomena are different in different regions of a fuel cell, fundamental phenomena in each region are first reviewed. This is followed by the presentation of various theoretical models on these transport processes in PEMFCs. Finally, experimental investigation on the cell performance of macro and micro PEMFC and DMFC is briefly presented.

1.
Larmine
,
A. B.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
John Wiley
, New York.
2.
Dagan
,
G.
, 1989,
Flow and Transport in Porous Formations
,
Springer
, Berlin.
3.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical-Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
4.
Gurau
,
V.
,
Barbir
,
F.
, and
Liu
,
H. T.
, 2000, “
An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
2468
2477
.
5.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
6.
Meng
,
H.
, and
Wang
,
C. Y.
, 2004, “
Electron Transport in PEFCs
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A358
A367
.
7.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
8.
Laconti
,
A. B.
,
Fragala
,
A. R.
, and
Boyack
,
J. R.
, 1977, “
Electrode Materials and Processes for Energy Conversion and Storage
,” in
ECS Processing
, Pennington, NJ.
9.
Zawodzinski
,
T. A.
et al.
, 1993, “
Water Transport-Properties of Various Fuel-Cell Ionomers
,”
Abstracts of Papers of The American Chemical Society
,
American Chemical Society
, Washington, D.C., Vol.
205
.
10.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
11.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2000, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
135
146
.
12.
Wang
,
G. G.
, and
Dong
,
Z. M.
, 2000, “
Design Optimization of a Complex Mechanical System Using Adaptive Response Surface Method
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
24
, pp.
295
306
.
13.
Zhou
,
T.
, and
Liu
,
H. T.
, 2000, “
3-D Model of Proton Exchange Membrane Fuel Cells
,” in ASME 2000, Heat Transfer Division, Orlando, Florida.
14.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical-Model of the Solid-Polymer-Electrolyte Fuel-Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
15.
Gurau
,
V.
,
Liu
,
H. T.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541,
44
, pp.
2410
2422
.
16.
Zhou
,
T.
, and
Liu
,
H. T.
, 2003, “
Performance Modeling of PEM Fuel Cell Operated on Reformate
,” in
Fuel Cell Science, Engineering And Technology.
, pp.
233
240
.
17.
Zhou
,
T.
, and
Liu
,
H. T.
, 2001, “
A General Three-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
Int. J. Transp. Phenom.
1028-6578,
3
, pp.
177
198
.
18.
Zhou
,
T.
, and
Liu
,
H. T.
, 2002, “
Heat Transfer Enhancement in Fuel Cells With Interdigitated Flow Field Design
,”
Progress Computational Fluid Dynamics
,
2
, pp.
97
105
.
19.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 1999, “
A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
431
452
.
20.
Berning
,
T.
,
Lu
,
M. D.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
21.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
C. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
22.
Zawodzinski
,
T. A.
et al.
, 1993, “
Water-Uptake by and Transport Through Nafion® 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1041
1047
.
23.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
5
), pp.
1218
1225
.
24.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along-The-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
25.
Parthasarathy
,
A.
et al.
, 1992, “
Pressure-Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode Nafion Interface—Electrode-Kinetics and Mass-Transport
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2856
2862
.
26.
Boyer
,
C.
et al.
, 1998, “
Measurements of Proton Conductivity in the Active Layer of PEM Fuel Cell Gas Diffusion Electrodes
,”
Electrochim. Acta
0013-4686,
43
, pp.
3703
3709
.
27.
Cwirko
,
E. H.
, and
Carbonell
,
R. G.
, 1992, “
Interpretation of Transport-Coefficients in Nafion Using a Parallel Pore Model
,”
J. Membr. Sci.
0376-7388,
67
, pp.
227
247
.
28.
Din
,
X. D.
, and
Michaelides
,
E. E.
, 1998, “
Transport Processes of Water and Protons Through Micropores
,”
AIChE J.
0001-1541,
44
, pp.
35
47
.
29.
Eikerling
,
M.
, and
Kornyshev
,
A. A.
, 2001, “
Proton Transfer in a Single Pore of a Polymer Electrolyte Membrane
,”
J. Electroanal. Chem.
0022-0728,
502
, pp.
1
14
.
30.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Modeling Transport in Polymer-Electrolyte Fuel Cells
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4679
4726
.
31.
Amphlett
,
J. C.
et al.
, 1995, “
Performance Modeling of the Ballard-Mark-IV Solid Polymer Electrolyte Fuel-Cell.2. Empirical-Model Development
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
9
15
.
32.
Verbrugge
,
M. W.
, and
Hill
,
R. F.
, 1990, “
Analysis of Promising Perfluorosulfonic Acid Membranes for Fuel-Cell Electrolytes
,”
J. Electrochem. Soc.
0013-4651,
137
, pp.
3770
3777
.
33.
Verbrugge
,
M. W.
, and
Hill
,
R. F.
, 1990, “
Ion and Solvent Transport in Ion-Exchange Membranes.1. A Macrohomogeneous Mathematical-Model
,”
J. Electrochem. Soc.
0013-4651,
137
, pp.
886
893
.
34.
Bernardi
,
D. M.
, 1990, “
Water-Balance Calculations for Solid-Polymer-Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
137
, pp.
3344
3350
.
35.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
3513
3526
.
36.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 1996, “
Numerical Analysis of Transport Processes in Proton Exchange Membrane Fuel Cells
,” in
1st International Energy and Environment Symposium
, Karadeniz Technical University, Trabzon, Turkey.
37.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
38
46
.
38.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
39.
Kulikovsky
,
A. A.
,
Divisek
,
J.
, and
Kornyshev
,
A. A.
, 1999, “
Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells: Dead and Active Reaction Zones
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
3981
3991
.
40.
Kazim
,
A.
,
Liu
,
H. T.
, and
Forges
,
P.
, 1999, “
Modelling of Performance of PEM Fuel Cells With Conventional and Interdigitated Flow Fields
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
1409
1416
.
41.
Nguyen
,
T. V.
, 1996, “
A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
L103
L105
.
42.
Natarajan
,
D.
, and
Van Nguyen
,
T.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
, pp.
A1324
A1335
.
43.
Yi
,
J. S.
, and
Van Nguyen
,
T.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
38
45
.
44.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
A Pseudo-Homogeneous Model for Cathode Catalyst Layer in PEM Fuel Cells
,” in ASME HTD, Orlando, Florida.
45.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
W. J.
, 2001, “
Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2029
2042
.
46.
Shimpalee
,
S.
, and
Dutta
,
S.
, 2000, “
Numerical Prediction of Temperature Distribution in PEM Fuel Cells
,”
Numer. Heat Transfer, Part A
1040-7782,
38
, pp.
111
128
.
47.
Natarajan
,
D.
, and
Nguyen
,
T. V.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
,
A1324
A1335
.
48.
Zhou
,
T. H.
, and
Liu
,
H. T.
, 2004, “
A 3D Model for PEM Fuel Cells Operated on Reformate
,”
J. Power Sources
0378-7753,
138
, pp.
101
110
.
49.
Zhou
,
T.
, and
Liu
,
H. T.
, 2002, “
Development and Simplification of a Three-Dimentional PEM Fuel Cell Model
,” in
ESDA 2002, 6th Biennial Conference on engineering Systems Design and Analysis
, Istanbul, Turkey.
50.
He
,
W. S.
,
Yi
,
J. S.
, and
Van Nguyen
,
T.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
, pp.
2053
2064
.
51.
Wang
,
C. Y.
, and
Cheng
,
P.
, 1996, “
A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media, 1. Model Development
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3607
3618
.
52.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
, pp.
40
50
.
53.
You
,
L. X.
, and
Liu
,
H. T.
, 2000, “
A Pseudo-Homogeneous Model for Cathode Catalyst Layer in PEM Fuel Cells
,” in ASME 2000, Orlando, Florida.
54.
You
,
L. X.
, and
Liu
,
H. T.
, 2002, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2287
.
55.
Rho
,
Y. W.
,
Srinivasan
,
S.
, and
Kho
,
Y. T.
, 1994, “
Mass-Transport Phenomena in Proton-Exchange Membrane Fuel-Cells Using O2∕He, O2∕Ar, And O2∕N2 Mixtures.2. Theoretical-Analysis
,”
J. Electrochem. Soc.
0013-4651,
141
, pp.
2089
2096
.
56.
Jordan
,
L. R.
et al.
, 2000, “
Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance
,”
J. Power Sources
0378-7753,
86
, pp.
250
254
.
57.
Sridhar
,
P.
et al.
, 2001, “
Humidification Studies on Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
101
, pp.
72
78
.
58.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H. T.
, 2003, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1263
1272
.
59.
Kelley
,
S. C.
,
Deluga
,
G. A.
, and
Smyrl
,
W. H.
, 2000, “
A Miniature Methanol/Air Polymer Electrolyte Fuel Cell
,”
Electrochem. Solid-State Lett.
1099-0062,
3
, pp.
407
409
.
60.
Meyers
,
J. P.
, and
Maynard
,
H. L.
, 2002, “
Design Considerations for Numaturized PEM Fuel Cells
,”
J. Power Sources
0378-7753,
109
, pp.
76
88
.
61.
Yu
,
J. R.
et al.
, 2003, “
Fabrication of a Miniature Twin-Fuel-Cell on Silicon Wafer
,”
Electrochim. Acta
0013-4686,
48
, pp.
1537
1541
.
62.
Yu
,
J. R.
,
Cheng
,
P.
,
Ma.
,
Z. Q.
, and
Yi
,
B. L.
, 2003, “
Fabrication of Miniature Silicon Wafer Fuel Cells With Improved Performance
,”
J. Power Sources
0378-7753,
124
, pp.
40
46
.
63.
Yu
,
J. R.
,
Cheng
,
P.
,
Ma
,
Z. Q.
, and
Yi
,
B. L.
, 2003, “
Fabrication of Miniature Silicon Wafer Fuel Cells Using Micro Fabrication Technologies
,”
1st International Conference on Fuel Cell Science, Engineering and Technology
, Rochester, New York, April 21–23.
64.
Cha
,
S. W.
,
Lee
,
S. J.
,
Park
,
Y. I.
, and
Prinz
,
F. B.
, 2003, “
Investigation of Transport Phenomena in Micro Flow Channels for Miniature Fuel Cells
,” in
Ist International Conference on Fuel Cell Science, Engineering and Technology
, Rochester, New York.
65.
Yen
,
T. J.
,
Fang
,
N.
,
Zhang
,
X.
,
Lu
,
G. Q.
, and
Wang
,
C. Y.
, 2003, “
A Micro Methanol Fuel Cell Operating at Near Room Temperature
,”
Appl. Phys. Lett.
0003-6951,
38
, pp.
4056
4058
.
66.
Lu
,
C.
et al.
, 2002, “
Development of Solid Oxide Fuel Cells for the Direct Oxidation of Hydrocarbon Fuels
,”
Solid State Ionics
0167-2738,
152
, pp.
393
397
.
67.
Cohen
,
R.
, 1991, Plaque fuel cell stack, United States.
68.
Heinzel
,
A.
et al.
, 1998, “
Membrane Fuel Cells-Concepts and System Design
,”
Electrochim. Acta
0013-4686,
43
, pp.
3817
3820
.
69.
Lee
,
S. J.
et al.
, 2002, “
Design and Fabrication of a Micro Fuel Cell Array With ‘Flip-Flop’ Interconnection
,”
J. Power Sources
0378-7753,
112
, pp.
410
418
.
You do not currently have access to this content.