The concept of disjoining pressure, developed from thermodynamic and hydrodynamic analysis, has been widely used as a means of modeling the liquid-solid molecular force interactions in an ultra-thin liquid film on a solid surface. In particular, this approach has been extensively used in models of thin film transport in passages in micro evaporators and micro heat pipes. In this investigation, hybrid μPT molecular dynamics (MD) simulations were used to predict the pressure field and film thermophysics for an argon film on a metal surface. The results of the simulations are compared with predictions of the classic thermodynamic disjoining pressure model and the Born-Green-Yvon (BGY) equation. The thermodynamic model provides only a prediction of the relation between vapor pressure and film thickness for a specified temperature. The MD simulations provide a detailed prediction of the density and pressure variation in the liquid film, as well as a prediction of the variation of the equilibrium vapor pressure variation with temperature and film thickness. Comparisons indicate that the predicted variations of vapor pressure with thickness for the three models are in close agreement. In addition, the density profile layering predicted by the MD simulations is in qualitative agreement with BGY results, however the exact density profile is dependent upon simulation parameters. Furthermore, the disjoining pressure effect predicted by MD simulations is strongly influenced by the allowable propagation time of injected molecules through the vapor region in the simulation domain. A modified thermodynamic model is developed that suggests that presence of a wall-affected layer tends to enhance the reduction of the equilibrium vapor pressure. However, the MD simulation results imply that presence of a wall layer has little effect on the vapor pressure. Implications of the MD simulation predictions for thin film transport in micro evaporators and heat pipes are also discussed.

1.
Israelachvili
,
J.
, 1992,
Intermolecular & Surface Forces
, 2nd ed.,
Academic
, London.
2.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
389
407
.
3.
Peterson
,
G. P.
,
Duncan
,
A. B.
, and
Weichold
,
M. H.
, 1993, “
Experimental Investigation of Micro Heat Pipes Fabricated in Silicone Wafers
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
751
756
.
4.
Gerner
,
F. M.
,
Badran
,
B.
,
Henderson
,
H. T.
, and
Ramadas
,
P.
, 1994, “
Silicon-Water Micro Heat Pipes
,”
Photochemistry
0079-1806,
2
, pp.
90
97
.
5.
Pettersen
,
J.
, 2004, “
Flow Vaporization of CO2 in Microchannel Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
111
121
.
6.
Park
,
K.
, and
Lee
,
K-S.
, 2003, “
Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro-Capillary Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4587
4594
.
7.
Wayner
,
P. C.
, Jr.
,
Kao
,
Y. K.
, and
LaCroix
,
L. V.
, 1976, “
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
487
492
.
8.
Xu
,
X.
, and
Carey
,
V. P.
, 1991, “
Film Evaporation From a Micro-Grooved Surface — An Approximate Heat Transfer Model and Its Comparison With Experimental Data
,”
J. Thermophys. Heat Transfer
0887-8722,
4
, pp.
512
520
.
9.
Stephan
,
P.
, and
Busse
,
C. A.
, 1992, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
383
391
.
10.
Swanson
,
L.
, and
Herdt
,
G. C.
, 1992, “
Model of the Evaporating Meniscus in a Capillary Tube
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
434
441
.
11.
Swanson
,
L.
, and
Peterson
,
G. P.
, 1994, “
The Evaporating Extended Meniscus in a V-Shaped Channel
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
172
181
.
12.
Hallinan
,
K. P.
,
Chebaro
,
H. C.
,
Kim
,
S. J.
, and
Change
,
W. S.
, 1994, “
Evaporation From an Extended Meniscus for Nonisothermal Interfacial Conditions
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
709
716
.
13.
Khrustalev
,
D.
, and
Faghri
,
A.
, 1995, “
Heat Transfer During Evaporation on Capillary Grooved Structures of Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
740
747
.
14.
Wemhoff
,
A. P.
, and
Carey
,
V. P.
, 2004, “
Exploration of Nanoscale Features of Thin Liquid Films on Solid Surfaces Using Molecular Dynamics Simulations
,” Paper No. IMECE2004-59429,
Proceedings of the 2004 ASME International Mechanical Engineering Conference and RD&D Exposition
.
15.
Box
,
G. E. P.
, and
Mueller
,
M. E.
, 1958, “
A Note on the Generation of Random Normal Deviates
,”
Ann. Math. Stat.
0003-4851,
29
, pp.
610
611
.
16.
Toxvaerd
,
S.
, 1981, “
The Structure and Thermodynamics of a Solid-Fluid Interface
,”
J. Chem. Phys.
0021-9606,
74
, pp.
1998
2005
.
17.
Rowley
,
L. A.
,
Nicholson
,
D.
, and
Parsonage
,
N. G.
, 1976, “
Grand Ensemble Monte Carlo Studies of Physical Adsorption. I. Results for Multilayer Adsorption of 12-6 Argon in the Field of a Plane Homogeneous Solid
,”
Mol. Phys.
0026-8976,
31
, pp.
365
387
.
18.
Wendland
,
M.
,
Salzmann
,
S.
,
Heinbuch
,
U.
, and
Fischer
,
J.
, 1989, “
Born-Green-Yvon Results for Adsorption of a Simple Fluid on Plane Walls
,”
Mol. Phys.
0026-8976,
67
, pp.
161
172
.
19.
Carey
,
V. P.
, 1999,
Statistical Thermodynamics and Microscale Thermophysics
,
Cambridge U. P.
, Cambridge.
20.
Andersen
,
H. C.
, 1980, “
Molecular Dynamics at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
0021-9606,
72
, pp.
2384
2393
.
21.
Frenkel
,
D.
, and
Smit
,
B.
, 2002,
Understanding Molecular Simulation; From Algorithms to Applications
, 2nd ed.,
Academic
, San Diego.
22.
Carey
,
V. P.
, and
Hawks
,
N. E.
, 1995, “
Stochastic Modeling of Molecular Transport to an Evaporating Microdroplet in a Superheated Gas
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
432
439
.
23.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon
, Oxford.
24.
Liu
,
K. S.
, 1974, “
Phase Separation of Lennard-Jones Systems: A Film in Equilibrium with Vapor
,”
J. Chem. Phys.
0021-9606,
60
, pp.
4226
4230
.
25.
Wendland
,
M.
,
Heinbuch
,
U.
, and
Fischer
,
J.
, 1989, “
Adsorption of Simple Gas Mixtures on a Plane Wall: Born-Green-Yvon Results for Structure, Adsorption Isotherms and Selectivity
,”
Fluid Phase Equilib.
0378-3812,
48
, pp.
259
277
.
26.
American Society of Heating, Refrigerating, and Air-conditioning Engineers, 2001,
ASHRAE Fundamentals Handbook
,
ASHRAE
, Atlanta.
27.
Dunikov
,
D. O.
,
Malyshenko
,
S. P.
, and
Zhakhovskii
,
V. V.
, 2001, “
Corresponding States Law and Molecular Dynamics Simulations of the Lennard-Jones Fluid
,”
J. Chem. Phys.
0021-9606,
115
, pp.
6623
6631
.
28.
Lotfi
,
A.
,
Vrabec
,
J.
, and
Fischer
,
J.
, 1992, “
Vapour Liquid Equilibria of the Lennard-Jones Fluid from the NPT Plus Test Particle Method
,”
Mol. Phys.
0026-8976,
76
, pp.
1319
1333
.
29.
Weng
,
J. G.
,
Park
,
S.
,
Lukes
,
J. R.
, and
Tien
,
C. L.
, 2000, “
Molecular Dynamics Investigation of Thickness Effect on Liquid Films
,”
J. Chem. Phys.
0021-9606,
113
, pp.
5917
5923
.
30.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase Change Phenomena
,
Taylor and Francis
, New York.
31.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U.-S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4277
4284
.
You do not currently have access to this content.