The paper describes the successful amalgamation of the thermoelectric and the adsorption cycles into a combined electro-adsorption chiller (EAC). The symbiotic union produces an efficiency or COP (coefficient of performance) more than threefold when compared with their individual cycles. The experiments conducted on the bench-scale prototype show that it can meet high cooling loads, typically 120W with an evaporator foot print of 25cm2, that is 5Wcm2 at the heated surface temperature of 22°C, which is well below that of the room temperature. The COPs of the EAC chiller vary from 0.7 to 0.8, which is comparable to the theoretical maximum of about 1.1 at the same operating conditions. With a copper-foam cladded evaporator, the high cooling rates have been achieved with a low temperature difference. In addition to meeting high cooling rates, the EAC is unique as (i) it has almost no moving parts and hence has silent operation, (ii) it is environmentally friendly as it uses a nonharmful adsorbent (silica gel), and (iii) water is used as the refrigerant.

1.
McGlen
,
R.
,
Jachuck
,
R.
, and
Lin
,
S.
, 2004, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
1143
1156
.
2.
Chu
,
R. C.
,
Simons
,
R. E.
,
Ellsworth
,
M. J.
,
Schmidt
,
R.
, and
Cozzolino
,
V.
, 2004, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
1530-4388,
4
, pp.
568
585
.
3.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T. T.
, 2002, “
Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
, pp.
356
365
.
4.
Gordon
,
J. M.
, and
Ng
,
K. C.
, 2000,
Cool Thermodynamics
,
Cambridge International Science
, Cambridge.
5.
Yu
,
X.
,
Feng
,
J.
,
Feng
,
Q.
, and
Wang
,
Q.
, 2005, “
Development of a Plate-fin Heat Sink and its Performance Comparisons with a Plate-fin Heat Sink
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
173
182
.
6.
Haider
,
S. I.
,
Joshi
,
Y. K.
, and
Nakayama
,
W.
, 2002, “
A Natural Circulation Model of the Closed Loop Two Phase Thermosyphon for Electronics Cooling
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
881
890
.
7.
Drost
,
K.
,
Friedrich
,
M.
,
Martin
,
C.
,
Martin
,
J.
, and
Hanna
,
B.
, 1999, “
Mesoscopic Heat-actuated Heat Pump Development
,”
ASME IMECE Conf.
, Nashville, TN, November 14–19,
ASME
, New York.
8.
Yeh
,
L. T.
, 1995, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
1043-7398,
117
, pp.
333
339
.
9.
Kim
,
K. S.
,
Won
,
M. H.
,
Kim
,
J. W.
, and
Back
,
B. J.
, 2003, “
Heat Pipe Cooling Technology for Desktop PC CPU
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1137
1144
.
10.
Schmidt
,
R.
, 2000, “
Electronics Cooling the Current Resources for the Practitioners
,” IBM Corporation.
11.
Goldsmid
,
H. J.
, and
Douglas
,
R. W.
, 1954, “
The Use of Semiconductors in Thermoelectric Refrigeration
,”
Br. J. Appl. Phys.
0508-3443,
5
, pp.
386
390
.
12.
Rowe
,
D. M.
, 1995,
CRC Handbook of Thermoelectrics
,
CRC
, Boca Raton, FL.
13.
Saha
,
B. B.
,
Koyama
,
S.
,
Kashiwagi
,
T.
,
Akisawa
,
A.
,
Ng
,
K. C.
, and
Chua
,
H. T.
, 2003, “
Waste Heat Driven Dual-Mode, Multi-Stage, Multi-Bed Regenerative Adsorption System
,”
Int. J. Refrig.
0140-7007,
26
, pp.
749
757
.
14.
Saha
,
B. B.
,
Koyama
,
S.
,
Lee
,
J. B.
,
Kuwahara
,
K.
,
Alam
,
K. C. A.
,
Hamamoto
,
Y.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
, 2003, “
Performance Evaluation of a Low-Temperature Waste Heat Driven Multi-Bed Adsorption Chiller
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
1249
1263
.
15.
Viswanathan
,
V. V.
,
Wegeng
,
R.
, and
Drost
,
K.
, 2002,
Microscale Adsorption for Energy and Chemical Systems
, Pacific Northwest National Laboratory (http://www.pnl.gov/microcats/aboutus/research/adsorption.htmlhttp://www.pnl.gov/microcats/aboutus/research/adsorption.html), date of access: 6 Feb. 2006.
16.
Edward
,
G.
, 1970, “
Thermoelectric Adsorber
,” US Patent No. 3,734,793. March 4.
17.
Bonnissel
,
M. P.
,
Luo
,
L.
, and
Tondeur
,
D.
, 2001, “
Rapid Thermal Swing Adsorption
,”
Ind. Eng. Chem. Res.
0888-5885,
40
, pp.
2322
2334
.
18.
Ng
,
K. C.
,
Gordon
,
J. M.
,
Chua
,
H. T.
, and
Chakraborty
,
A.
, 2002, “
Electro-adsorption Chiller: A Miniaturized Cooling Cycle with Applications from Microelectronics to Conventional Air-conditioning
,” US Patent No. 6,434,955.
19.
Ng
,
K. C.
,
Wang
,
X. L.
,
Gao
,
L. Z.
,
Chakraborty
,
A.
, and
Sai
,
M. A.
, 2005, “
Experimental Investigation of an Electro-adsorption Chiller
,”
Proc. ASME Heat Transfer Conf. Summer Heat Transfer Conf., July 17–22
,
Westin St. Francis
, San Francisco, CA.
20.
Chakraborty
,
A.
, 2005, “
Thermoelectric Cooling Devices: Thermodynamic Modelling and their Application in Adsorption Cooling Cycles
,” Ph.D. thesis, Department of Mechanical Engineering, National University of Singapore.
21.
Ng
,
K. C.
,
Chakraborty
,
A.
,
Sai
,
M. A.
, and
Wang
,
X. L.
, 2006, “
New Pool Boiling Data for Water with Copper Foam-Metal at Sub-atmospheric Pressures: Experiments and Correlation
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1286
1290
.
You do not currently have access to this content.