In thermomechanical data storage, a heated atomic force microscope cantilever tip is in contact with and scans over a polymer film. Heating in the cantilever and cantilever tip induces local deformation of the polymer near the tip, with indents as small as 22nm. This paper reports a simple modeling approach for predicting heat and mass transfer in the cantilever tip and polymer with the goal of predicting indent formation conditions. The model accounts for subcontinuum conduction in the cantilever tip and for the time- and temperature-dependent mechanical properties of the polymer. Simulations predict steady state and transient indent formation, and the results compare well with data. For loading forces 30200nN and a tip radius of 20nm, a cantilever temperature of 200°C is required to form an indent at steady state. For heating pulses as short as 5μs, the cantilever temperature required for bit formation is as high as 500°C. By quantifying the conditions required for indent formation, this work may improve the operation of heated probes for thermomechanical data storage.

1.
Vettiger
,
P.
,
Cross
,
G.
,
Despont
,
M.
,
Drechsler
,
U.
,
Duerig
,
U.
,
Gotsmann
,
B.
,
Haberle
,
W.
,
Lantz
,
M.
,
Rothuizen
,
H.
,
Stutz
,
R.
, and
Binnig
,
G.
, 2002, “
The “Millipede”-Nanotechnology Entering Data Storage
,”
IEEE Trans. Nanotechnol.
1536-125X,
1
, pp.
39
64
.
2.
Vettiger
,
P.
,
Despont
,
M.
,
Drechsler
,
U.
,
Durig
,
U.
,
Haberle
,
W.
,
Lutwyche
,
M. I.
,
Rothuizen
,
H. E.
,
Stutz
,
R.
,
Widmer
,
R.
, and
Binnig
,
G. K.
, 2000, “
The “Millipede”-More Than One Thousand Tips for Future AFM Data Storage
,”
IBM J. Res. Dev.
0018-8646,
44
, pp.
323
340
.
3.
Binnig
,
G.
,
Despont
,
M.
,
Drechsler
,
U.
,
Häberle
,
W.
,
Lutwyche
,
M.
,
Vettiger
,
P.
,
Mamin
,
H. J.
,
Chui
,
B. W.
, and
Kenny
,
T. W.
, 1999, “
Ultrahigh-Density Atomic Force Microscopy Data Storage With Erase Capability
,”
Appl. Phys. Lett.
0003-6951,
76
, pp.
1329
1331
.
4.
Chui
,
B. W.
,
Stowe
,
T. D.
,
Ju
,
Y. S.
,
Goodson
,
K. E.
,
Kenny
,
T. W.
,
Mamin
,
H. J.
,
Terris
,
B. D.
, and
Ried
,
R. P.
, 1998, “
Low-Stiffness Silicon Cantilever With Integrated Heaters and Piezoresistive Sensors for High-Density Data Storage
,”
J. Microelectromech. Syst.
1057-7157,
7
, pp.
69
78
.
5.
Weber
,
L.
,
Gmelin
,
E.
, and
Queisser
,
H. J.
, 1989, “
Thermal Resistance of Silicon Point Contacts
,”
Phys. Rev. B
0163-1829,
40
, pp.
1244
1249
.
6.
Phelan
,
P. E.
,
Nakabeppu
,
O.
,
Itoh
,
K.
,
Hijikata
,
K.
,
Ohmori
,
T.
, and
Torikoshi
,
K.
, 1993, “
Heat Transfer and Thermoelectric Voltage at Metallic Point Contacts
,”
J. Heat Transfer
0022-1481,
155
, pp.
757
762
.
7.
Shi
,
L.
and
Majumdar
,
A.
, 2002, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
J. Heat Transfer
0022-1481,
124
, pp.
329
337
.
8.
Nakabeppu
,
O.
,
Igeta
,
M.
, and
Hijikata
,
K.
, 1997, “
Experimental Study on Point-Contact Transport Phenomena Using the Atomic Force Microscope
,”
Microscale Thermophys. Eng.
1089-3954,
1
, pp.
201
213
.
9.
Lutwyche
,
M. I.
,
Despont
,
M.
,
Drechsler
,
U.
,
Durig
,
U.
,
Hablerle
,
W.
,
Rothuizen
,
H.
,
Stutz
,
R.
,
Widmer
,
R.
,
Binnig
,
G. K.
, and
Vettiger
,
P.
, 2000, “
Highly Parallel Data Storage System Based on Scanning Probe Arrays
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
3299
3301
.
10.
Chui
,
B. W.
,
Asheghi
,
M.
,
Ju
,
Y. S.
,
Goodson
,
K. E.
,
Kenny
,
T. W.
, and
Mamin
,
H. J.
, 1999, “
Intrinsic-Carrier Thermal Runaway in Silicon Microcantilevers
,”
Microscale Thermophys. Eng.
1089-3954,
3
, pp.
217
228
.
11.
Mark
,
J. E.
, 1999,
Polymer Data Handbook
,
Oxford University Press
,
New York
.
12.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
J. Heat Transfer
0022-1481,
123
, pp.
130
137
.
13.
Masters
,
N.
,
Ye
,
W.
, and
King
,
W. P.
, 2005, “
The Impact of Sub-Continuum Gas Conduction on the Sensitivity of Heated Atomic Force Microscope Cantilevers
,”
Phys. Fluids
1070-6631,
17
, p.
100615
.
14.
Schwartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
15.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Oxford University Press
,
Oxford
.
16.
Casimir
,
H. B. G.
, 1938, “
Note on the Conduction of Heat in Crystals
,”
Physica (Amsterdam)
0031-8914
5
, pp.
495
500
.
17.
Kittel
,
C.
, 1996,
Introduction to Solid State Physics
, 7th ed.,
Wiley
,
New York
.
18.
Touloukian
,
Y. S.
, 1970,
Thermal Conductivity: Nonmetallic Solids
,
IFI∕Plenum
,
New York
.
19.
Cappella
,
B.
, and
Dietler
,
G.
, 1999, “
Force-Distance Curves by Atomic Force Microscopy
,”
Surf. Sci. Rep.
0167-5729,
43
, pp.
1
104
.
20.
Sneddon
,
I. N.
, 1965, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
47
57
.
21.
King
,
W. P.
,
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Cross
,
G. L. W.
,
Despont
,
M.
,
Durig
,
U. T.
,
Rothuizen
,
H.
,
Binnig
,
G.
, and
Vettiger
,
P.
, 2002, “
Design of Atomic Force Microscope Cantilevers for Combined Thermomechanical Writing and Thermal Reading in Array Operation
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
765
774
.
22.
Roshenow
,
W. M.
, and
Choi
,
H. Y.
, 1961,
Heat, Mass, and Momentum Transfer
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
23.
Sheehan
,
P. E.
,
Whitman
,
L. J.
,
King
,
W. P.
, and
Nelson
,
B. A.
, 2004, “
Nanoscale Deposition of Solid Inks via Thermal Dip Pen Nanolithography
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
1589
1591
.
24.
Nelson
,
B. A.
,
King
,
W. P.
,
Laracuente
,
A.
,
Sheehan
,
P. E.
, and
Whitman
,
L. J.
, 2006, “
Direct Deposition of Continuous Metal Nanostructures by Thermal Dip-Pen Nanolithography
,”
Appl. Phys. Lett.
0003-6951,
88
, p.
033104
.
25.
King
,
W. P.
, 2005, “
Design Analysis of Heated Atomic Force Microscope Cantilevers for Nanotopography Measurements
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
2441
2448
.
26.
King
,
W. P.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2004, “
Comparison of Thermal and Piezoresistive Sensing Approaches for Atomic Force Microscopy Topography Measurements
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
2086
2088
.
27.
Cross
,
G.
,
Despont
,
M.
,
Drechsler
,
U.
,
Dürig
,
U.
,
Vettiger
,
P.
,
King
,
W. P.
, and
Goodson
,
K. E.
, 2001, “
Thermomechanical Formation and Thermal Sensing of Nanometer-Scale Indentations in PMMA Thin Films for Parallel and Dense AFM Data Storage
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
649
, pp.
Q2.3.1
Q2.3.7
.
28.
Ferry
,
J. D.
, 1980,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
29.
Fuchs
,
K.
,
Friedrich
,
C.
, and
Weese
,
J.
, 1996, “
Viscoelastic Properties of Narrow-Distribution Poly(methyl methacrylates)
,”
Macromolecules
0024-9297,
29
, pp.
5893
5901
.
30.
Deen
,
W. M.
, 1998,
Analysis of Transport Phenomena
,
Oxford University Press
,
New York
.
31.
Terris
,
B. D.
,
Rishton
,
S. A.
,
Mamin
,
H. J.
,
Ried
,
R. P.
, and
Rugar
,
D.
, 1998, “
Atomic Force Microscope-Based Data Storage: Track Servo and Wear Study
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
66
, pp.
S809
S813
.
32.
Mamin
,
H. J.
,
Ried
,
R. P.
,
Terris
,
B. D.
, and
Rugar
,
D.
, 1999, “
High-Density Data Storage Based on the Atomic Force Microscope
,”
Proc. IEEE
0018-9219,
87
, pp.
1014
1027
.
You do not currently have access to this content.