Steady-state conjugate heat transfer study of a slab and a fluid is carried out for a two-dimensional laminar incompressible wall jet over a backward-facing step. Unsteady stream function-vorticity formulation is used to solve the governing equation in the fluid region. An explicit expression has been derived for the conjugate interface boundary. The energy equation in the fluid, interface boundary and the conduction equation in the solid are solved simultaneously. The conjugate heat transfer characteristics, Nusselt number are studied with flow property (Re), fluid property (Pr), and solid to fluid conductivity ratio (k). Average Nusselt number is compared with that of the nonconjugate case. As k is increased, average Nusselt number is increased, asymptotically approaching the non-conjugate value.

1.
Glauert
,
M. B.
, 1956, “
The Wall Jet
,”
J. Fluid Mech.
0022-1120,
1
, pp.
1
10
.
2.
Schwarz
,
W. H.
, and
Caswell
,
B.
, 1961, “
Some Heat Transfer Characteristics of the Two-Dimensional Laminar Incompressible Wall Jet
,”
Chem. Eng. Sci.
0009-2509,
16
, pp.
338
351
.
3.
Bajura
,
R. A.
, and
Szewczyk
,
A. A.
, 1970, “
Experimental Investigation of a Laminar Two-Dimensional Plane Wall Jet
,”
Phys. Fluids
0031-9171,
13
, pp.
1653
1664
.
4.
Angirasa
,
D.
, 1999, “
Interaction of Low-Velocity Plane Jets With Buoyant Convection Adjacent to Heated Vertical Surfaces
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
67
84
.
5.
Seidel
,
J.
, 2001, “
Numerical Investigations of Forced Laminar and Turbulent Wall Jets Over a Heated Surface
,” Ph.D. thesis, Faculty of the Department of Aerospace and Mechanical Engineering, The Graduat College, The University of Arizona, Tucson, AZ.
6.
Bhattacharjee
,
P.
, and
Loth
,
E.
, 2004, “
Simulations of Laminar and Transitional Cold Wall Jets
,”
Int. J. Heat Fluid Flow
0142-727X,
123
, pp.
32
43
.
7.
Kanna
,
P. R.
, and
Das
,
M. K.
, 2005, “
Conjugate Forced Convection Heat Transfer from a Flat Plate by Laminar Plance Wall Jet Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2896
2910
.
8.
Kanna
,
P. R.
, and
Das
,
M. K.
, 2005, “
Conjugate Heat Transfer Study of Two-Dimensional Laminar Incompressible Offset Jet Flows
,”
Numer. Heat Transfer, Part A
1040-7782,
48
, pp.
671
691
.
9.
Chiu
,
W. K. S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
, 2001, “
Experimental and Numerical Study of Conjugate Heat Transfer in a Horizontal Channel Heated From Below
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
688
697
.
10.
Kuyper
,
R. A.
,
Van Der Meer
,
Th. H.
,
Hoogendoorn
,
C. J.
, and
Henkes
,
R. A. W. M.
, 1993, “
Numerical Study of Laminar and Turbulent Natural Convection in an Inclined Square Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
2899
2911
.
11.
Roache
,
P. J.
, 1998,
Fundamentals of Computational Fluid Dynamics
,
Hermosa
, Albuquerque, NM, Chap. 3.
12.
Napolitano
,
M.
,
Pascazio
,
G.
, and
Quartapelle
,
L.
, 1999, “
A Review of Vorticity Conditions in the Numerical Solution of the ζ−ψ Equations
,”
Comput. Fluids
0045-7930,
28
, pp.
139
185
.
13.
Huang
,
H.
, and
Wetton
,
B. R.
, 1996, “
Discrete Compatibility in Finite Difference Methods for Viscous Incompressible Fluid Flows
,”
J. Comput. Phys.
0021-9991,
126
, pp.
468
478
.
14.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
15.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schonung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
0022-1120,
127
, pp.
473
496
.
16.
Gartling
,
D. K.
, 1990, “
A Test Problem for Outflow Boundary Conditions-Flow Over a Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
953
967
.
17.
Dyne
,
B. R.
, and
Heinrich
,
J. C.
, 1992, “
Flow Over a Backward-Facing Step: A Benchmark Problem for Laminar Flow With Heat Transfer
,”
Benchmark Problems for Heat Transfer Codes
,
ASME
,
New York
, HTD-V 222, pp.
73
76
.
18.
Quintana
,
D. L.
,
Amitay
,
M.
,
Ortega
,
A.
, and
Wygnanski
,
I. J.
, 1997, “
Heat Transfer in the Forced Laminar Wall Jet
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
451
459
.
19.
Barton
,
I. E.
, 1997, “
The Entrance Effect of Laminar Flow over a Backward-Facing Step Geometry
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
633
644
.
20.
Kanna
,
P. R.
, and
Das
,
M. K.
, 2006, “
Numerical Simulation of Two-Dimensional Laminar Incompressible Wall Jet Flow Over Backward-Facing Step
,”
J. Fluids Eng.
0098-2202,
128
, pp.
1023
1035
.
21.
Kanna
,
P. R.
, and
Das
,
M. K.
, 2006, “
Heat Transfer Study of Two-Dimensional Laminar Incompressible Wall Jet Over Backward-Facing Step
,”
Numer. Heat Transfer, Part A
1040-7782,
50
, pp.
165
187
.
22.
Rao
,
C. G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
, 2001, “
Conjugate Mixed Convection With Surface Radiation From a Vertical Plate With a Discrete Heat Source
,”
ASME Trans. J. Heat Transfer
0022-1481,
123
, pp.
698
702
.
You do not currently have access to this content.