An empirical model for natural convection heat transfer for film-boiling condition has been developed for volumetrically heated particulate debris beds when flooded with water at the top of the bed. The model has been derived from the quenching data generated in the POMECO facility located at KTH, Stockholm. A dryout model is also developed for countercurrent flooding limiting condition when the heat generating saturated debris bed is flooded with water from the top. The model is in good agreement with the experimental data over a wide range of particle size and porosity as compared to the existing models. The implication of the models with respect to quenching of porous debris bed formed during postulated severe accident condition is discussed.

1.
Hardee
,
H. C.
, and
Nilson
,
R. H.
, 1977, “
Natural Convection in Porous Media With Heat Generation
,”
Nucl. Sci. Eng.
,
63
, pp.
119
132
. 0029-5639
2.
Sehgal
,
B. R.
,
Konovalikhin
,
M. J.
,
Yang
,
Z. L.
,
Kazachkov
,
I. V.
,
Amjad
,
M.
, and
Li
,
G. J.
, 2001 “
Experimental Investigation on Porous Media Coolability: KTH Report
,” Division of Nuclear Power Safety,
Royal Institute of Technology
.
3.
Nayak
,
A. K.
,
Sehgal
,
B. R.
, and
Stepanayan
,
A.
, 2006, “
An Experimental Study on Quenching of a Radially Stratified Heated Porous Bed
,”
Nucl. Eng. Des.
,
236
, pp.
2189
2198
. 0029-5493
4.
Kakac
,
S.
,
Aung
,
W.
, and
Viskanta
,
R.
, 1985,
Natural Convection Fundamentals and Applications
,
Hemisphere
,
Washington, DC
, pp.
500
511
.
5.
Bau
,
H.
, and
Torrance
,
K. E.
, 1982, “
Boiling in Low Permeability Porous Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
45
55
.
6.
Bürger
,
M.
, and
Berthoud
,
G.
, 2006, “
Basic Laws and Coolability of Particulate Debris: Comments on the Status and Present Contributions
,”
Nucl. Eng. Des.
,
236
, pp.
2049
2059
. 0029-5493
7.
Wallis
,
J. B.
, 1969,
One Dimensional Two Phase Flow
,
McGraw-Hill
,
New York
, pp.
336
340
.
8.
Gorham-Bergeron
,
E.
, 1983, “
Remaining Uncertainties in Predicting the Coolability Limits of a Degraded Reactor Core
,”
Proceedings of the International Meeting of Light Water Reactor Severe Accident Evaluation
,
Cambridge, MA
, Aug. 28–Sept. 1.
9.
Squarer
,
D.
,
Pieczynski
,
A. T.
, and
Hochreiter
,
L. E.
, 1982, “
Effect of Debris Bed Pressure, Particle Size and Distribution on Degraded Nuclear Reactor Core Coolant
,”
Nucl. Sci. Eng.
,
80
, pp.
2
13
. 0029-5639
10.
Barleon
,
L.
, and
Werle
,
H.
, 1981, “
Dependence of Dryout Heat Flux on Particle Diameter for Volume and Bottom-Heated Debris Beds
,”
Kernforschungszentrum
, Technical Report No. KfK-3138.
11.
Catton
,
I.
,
Dhir
,
V. K.
, and
Somerton
,
C. W.
, 1983, “
An Experimental Study of Debris Bed Coolability Under Pool Boiling Conditions
,”
University of California
, Technical Report.
12.
Trenberth
,
R.
, and
Stevens
,
G. F.
, 1980, “
An Experimental Study of Boiling Heat Transfer and Dryout in Heated Particulated Beds
,”
Winfrith
, Technical Report No. UKAEA.
13.
Gabor
,
J. D.
, 1980, “
Status Report on Limiting Heat Fluxes in Debris Beds
,”
Argonne National Laboratory
, Technical Report No. ANL/RAS 80-21.
14.
Hofmann
,
G.
, 1984, “
On the Location and Mechanisms of Dryout in Top-Fed and Bottom-Fed Particulate Beds
,”
Nucl. Technol.
,
65
, pp.
36
45
. 0029-5450
15.
Lindholm
,
I.
,
Holmström
,
S.
,
Miettinen
,
J.
,
Lestinen
,
V.
,
Hyvärinen
,
J.
,
Pankakoski
,
P.
, and
Sjövall
,
H.
, 2006, “
Dryout Heat Flux Experiments With Deep Heterogeneous Particle Bed
,”
Nucl. Eng. Des.
,
236
, pp.
2060
2074
. 0029-5493
16.
Schmidt
,
W.
, 2004, “
Influence of Multidimensionality and Interfacial Friction on the Coolability of Fragmented Corium
,” Ph.D. thesis, University of Stuttgart, Stuttgart.
17.
Décossin
,
É.
, 1999, “
Numerical Investigation on Particulate Debris Bed Coolability: Critical Analysis of the Silfide Experimental Project
,”
Proceedings: The Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9)
, San Francisco, CA, Oct. 3–8.
18.
Konovalikhin
,
M. J.
,
Yang
,
Z. L.
,
Amjad
,
M.
, and
Sehgal
,
B. R.
, 2000, “
On Dryout Heat Flux of a Particles Debris Bed With a Downcomer
,” Technical Report No. ICONE-8.
19.
Lipinski
,
R. J.
, 1984, “
A Coolability Model for Post Accident Nuclear Reactor Debris
,”
Nucl. Technol.
,
65
, pp.
53
66
. 0029-5450
20.
Reed
,
A. W.
, 1982, “
The Effect of Channeling on the Dryout of Heated Particulate Beds Immersed in a Liquid Pool
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
21.
Hu
,
K.
, and
Theofanous
,
T. G.
, 1991, “
On the Measurement and Mechanism of Dryout in Volumetrically Heated Coarse Particle Beds
,”
Int. J. Multiphase Flow
,
17
, pp.
519
532
. 0301-9322
22.
Tung
,
V. X.
, and
Dhir
,
V. K.
, 1988, “
A Hydrodynamic Model for Two-Phase Flow Through Porous Media
,”
Int. J. Multiphase Flow
,
14
, pp.
47
65
. 0301-9322
23.
Schulenberg
,
T.
, and
Müller
,
U.
, 1986, “
A Refined Model for the Coolability of Core Debris With Flow Entry From the Bottom
,”
Proceedings of the Sixth Information Exchange Meeting on Debris Coolability
, University of California, Los Angeles, Mar., Paper No. EPRI NP-4455.
24.
Ostenson
,
R. W.
, and
Lipinski
,
R. J.
, 1981, “
A Particle Bed Dryout Model Based on Flooding
,”
Nucl. Sci. Eng.
,
79
, pp.
110
140
. 0029-5639
You do not currently have access to this content.