In high temperature and vacuum applications, when heat transfer is predominantly by radiation, the material’s surface texture is of substantial importance. Several micro- and nanostructure designs have been proposed to enhance a material’s emissivity and its radiative coherence, as control of thermal emission is of crucial concern in the design of infrared sources, optical filters, and sensing devices. In this research, an extraordinary coherent thermal emission from an anisotropic microstructure is experimentally and theoretically presented. The enhanced coherency is due to coherent coupling between resonant cavities obtained by surface standing waves, wherein each cavity supports a localized field that is attributed to coupled surface phonon polaritons. We show that it is possible to obtain a polarized quasimonochromatic thermal source from a SiC microstructure with a high quality factor of 600 at the resonant frequency of the cavity and a spatial coherence length of 716 wavelengths, which corresponds to an angular divergence of 1.4mrad. In the experimental results, we measured a quality factor of 200 and a spatial coherence length of 143 wavelengths. We attribute the deviation in the experimental results to imperfections in the fabrication of the high quality factor cavities.

1.
Greffet
,
J.-J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J.-P.
,
Mainguy
,
S.
, and
Chen
,
Y.
, 2002, “
Coherent Emission of Light by Thermal Sources
,”
Nature (London)
0028-0836,
416
, pp.
61
63
.
2.
Fu
,
C. J.
,
Zhang
,
Z. M.
, and
Tanner
,
D. B.
, 2005, “
Planar Heterogeneous Structures for Coherent Emission of Radiation
,”
Opt. Lett.
0146-9592,
30
, pp.
1873
1875
.
3.
Sai
,
H.
,
Yugami
,
H.
,
Akiyama
,
Y.
,
Kanamori
,
Y.
, and
Hane
,
K.
, 2001, “
Spectral Control of Thermal Emission by Periodic Microstructured Surfaces in the Near-Infrared Region
,”
J. Opt. Soc. Am. A
0740-3232,
18
, pp.
1471
1476
.
4.
Boardman
,
A. D.
, 1982,
Electromagnetic Surface Modes
,
Wiley
,
Belfast, Ireland
.
5.
Raether
,
H.
, 1988,
Surface Plasmons
,
Springer-Verlag
,
Berlin
.
6.
Shchegrov
,
A. V.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
, 2000, “
Near-Field Spectral Effects Due to Electromagnetic Surface Excitations
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
1548
1551
.
7.
Carminati
,
R.
, and
Greffet
,
J.-J.
, 1999, “
Near-Field Effects in Spatial Coherence of Thermal Sources
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
1660
1663
.
8.
Setälä
,
T.
,
Kaivola
,
M.
, and
Friberg
,
A. T.
, 2002, “
Degree of Polarization in Near Fields of Thermal Sources: Effects of Surface Waves
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
123902
.
9.
Laroche
,
M.
,
Arnold
,
C.
,
Marquier
,
F.
,
Carminati
,
R.
,
Greffet
,
J.-J.
,
Collin
,
S.
,
Bardou
,
N.
, and
Pelouard
,
J.-L.
, 2005, “
Highly Directional Radiation Generated by a Tungsten Thermal Source
,”
Opt. Lett.
0146-9592,
30
, pp.
2623
2625
.
10.
Hesketh
,
P. J.
,
Zemel
,
J. N.
, and
Gebhart
,
B.
, 1988, “
Polarized Spectral Emittance From Periodic Micromachined Surfaces. I. Doped Silicon: The Normal Direction
,”
Phys. Rev. B
0163-1829,
37
, pp.
10795
10802
.
11.
Lee
,
B. J.
, and
Zhang
,
Z. M.
, 2007, “
Coherent Thermal Emission From Modified Periodic Multilayer Structures
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
17
26
.
12.
Ben-Abdallah
,
P.
, 2004, “
Thermal Antenna Behavior for Thin-Film Structures
,”
J. Opt. Soc. Am. A
0740-3232,
21
, pp.
1368
1371
.
13.
Yablonovitch
,
E.
, 1987, “
Inhibited Spontaneous Emission in Solid-State Physics and Electronics
,”
Phys. Rev. Lett.
0031-9007,
58
, pp.
2059
2062
.
14.
Chan
,
D. L. C.
,
Soljačić
,
M.
, and
Joannopolous
,
J. D.
, 2006, “
Thermal Emission and Design in 2D-Periodic Metallic Photonic Crystal Slabs
,”
Opt. Express
1094-4087,
14
, pp.
8785
8796
.
15.
El-Kady
,
I.
,
Chow
,
W. W.
, and
Fleming
,
J. G.
, 2005, “
Emission From an Active Photonic Crystal
,”
Phys. Rev. B
0163-1829,
72
, p.
195110
.
16.
Celanovic
,
I.
,
Perreault
,
D.
, and
Kassakian
,
J.
, 2005, “
Resonant-Cavity Enhanced Thermal Emission
,”
Phys. Rev. B
0163-1829,
72
, p.
075127
.
17.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2007, “
Enhanced Coherency of Thermal Emission: Beyond the Limitation Imposed by Delocalized Surface Waves
,”
Phys. Rev. B
0163-1829,
76
, p.
045427
.
18.
Sobnack
,
M. B.
,
Tan
,
W. C.
,
Wanstall
,
N. P.
,
Preist
,
T. W.
, and
Sambles
,
J. R.
, 1998, “
Stationary Surface Plasmons on a Zero-Order Metal Grating
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
5667
5670
.
19.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Kleiner
,
V.
, and
Hasman
,
E.
, 2005, “
Space-Variant Polarization Manipulation of a Thermal Emission by a SiO2 Subwavelength Grating Supporting Surface Phonon-Polaritons
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
191102
.
20.
Palik
,
E. D.
, 1985,
Handbook of Optical Constants of Solids
,
Academic
,
Orlando, FL.
21.
Yang
,
F.
,
Sambles
,
J. R.
, and
Bradberry
,
G. W.
, 1991, “
Long-Range Surface Modes Supported by Thin Films
,”
Phys. Rev. B
0163-1829,
44
, pp.
5855
5872
.
22.
Mühlschlegel
,
P.
,
Eisler
,
H.-J.
,
Martin
,
O. J. F.
,
Hecht
,
B.
, and
Pohl
,
D. W.
, 2005, “
Resonant Optical Antennas
,”
Science
0036-8075,
308
, pp.
1607
1609
.
23.
Gordon
,
R.
, and
Brolo
,
A. G.
, 2005, “
Increased Cut-Off Wavelength for a Subwavelength Hole in a Real Metal
,”
Opt. Express
1094-4087,
13
, pp.
1933
1938
.
You do not currently have access to this content.