The onset of thermomagnetic convection in a ferrofluid saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated for a variety of velocity and temperature boundary conditions. The Brinkman–Lapwood extended Darcy equation, with fluid viscosity different from effective viscosity, is used to describe the flow in the porous medium. The lower boundary of the porous layer is assumed to be rigid-ferromagnetic, while the upper boundary is considered to be either rigid-ferromagnetic or stress-free. The thermal conditions include fixed heat flux at the lower boundary, and a general convective-radiative exchange at the upper boundary, which encompasses fixed temperature and heat flux as particular cases. The resulting eigenvalue problem is solved using the Galerkin technique and also by using regular perturbation technique when both boundaries are insulated to temperature perturbations. It is found that the increase in the Biot number and the viscosity ratio, and the decrease in the magnetic as well as in the Darcy number is to delay the onset of ferroconvection. Besides, the nonlinearity of fluid magnetization has no effect on the onset of convection in the case of fixed heat flux boundary conditions.

1.
Rosensweig
,
R. E.
, 1985,
Ferrohydrodynamics
,
Cambridge University Press
,
London
.
2.
Berkovsky
,
B. M.
,
Medvedev
,
V. F.
, and
Krakov
,
M. S.
, 1993,
Magnetic Fluids, Engineering Applications
,
Oxford University Press
,
New York
.
3.
Blums
,
E.
,
Cebers
,
A.
, and
Maiorov
,
M. M.
, 1997,
Magnetic Fluids
,
de Gruyter
,
New York
.
4.
Hergt
,
R.
,
Andrä
,
W.
,
Ambly
,
C. G.
,
Hilger
,
I.
,
Kaiser
,
W. A.
,
Richter
,
U.
, and
Schmidt
,
H. G.
, 1998, “
Physical Limitations of Hypothermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
0018-9464,
34
, pp.
3745
3754
.
5.
Alexiou
,
C.
,
Arnold
,
W.
,
Hulin
,
P.
,
Klein
,
R.
,
Schmidt
,
A.
,
Bergemann
,
C.
, and
Parak
,
F. G.
, 2001, “
Therapeutic Efficacy of Ferrofluid Bound Anticancer Agent
,”
Magnetohydrodynamics
0025-0015,
37
, pp.
318
322
.
6.
Finlayson
,
B. A.
, 1970, “
Convective Instability of Ferromagnetic Fluids
,”
J. Fluid Mech.
0022-1120,
40
, pp.
753
767
.
7.
Lalas
,
D. P.
, and
Carmi
,
S.
, 1971, “
Thermoconvective Stability of Ferrofluids
,”
Phys. Fluids
0031-9171,
14
, pp.
436
437
.
8.
Shliomis
,
M. I.
, 1974, “
Magnetic Fluids
,”
Sov. Phys. Usp.
0038-5670,
17
(
2
), pp.
153
169
.
9.
Gotoh
,
K.
, and
Yamada
,
M.
, 1982, “
Thermal Convection in a Horizontal Layer of Magnetic Fluids
,”
J. Phys. Soc. Jpn.
0031-9015,
51
, pp.
3042
3048
.
10.
Schwab
,
L.
,
Hilderbrandt
,
U.
, and
Stierstadt
,
K.
, 1983, “
Magnetic Bénard Convection
,”
J. Magn. Magn. Mater.
0304-8853,
39
, pp.
113
114
.
11.
Stiles
,
P. J.
, and
Kagan
,
M.
, 1990, “
Thermoconvective Instability of a Horizontal Layer of Ferrofluid in a Strong Vertical Magnetic Field
,”
J. Colloid Interface Sci.
0021-9797,
134
, pp.
435
448
.
12.
Shivakumara
,
I. S.
,
Rudraiah
,
N.
, and
Nanjundappa
,
C. E.
, 2002, “
Effect of Non-Uniform Basic Temperature Gradient on Rayleigh–Benard–Marangoni Convection in Ferrofluids
,”
J. Magn. Magn. Mater.
0304-8853,
248
, pp.
379
395
.
13.
Kaloni
,
P. N.
, and
Lou
,
J. X.
, 2004, “
Convective Instability of Magnetic Fluids
,”
Phys. Rev. E
1063-651X,
70
, p.
026313
.
14.
Shivakumara
,
I. S.
, and
Nanjundappa
,
C. E.
, 2006, “
Marangoni Ferroconvection With Different Initial Temperature Gradients
,”
J. Energy Heat Mass Transf.
,
28
, pp.
45
59
. 0970-9991
15.
Volker
,
T.
,
Blums
,
E.
, and
Odenbach
,
S.
, 2007, “
Heat and Mass Transfer Phenomena in Magnetic Fluids
,”
Mitt. Ges. Angew. Math. Mech.
0936-7195,
30
(
1
), pp.
185
194
.
16.
Sunil
, and
Mahajan
,
A.
, 2008, “
A Nonlinear Stability Analysis for Magnetized Ferrofluid Heated From Below
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
, pp.
83
98
.
17.
Nanjundappa
,
C. E.
, and
Shivakumara
,
I. S.
, 2008, “
Effect of Velocity and Temperature Boundary Conditions on Convective Instability in a Ferrofluid Layer
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
104502
.
18.
Rosensweig
,
R. E.
,
Zahn
,
M.
, and
Volger
,
T.
, 1978, “
Stabilization of Fluid Penetration Through a Porous Medium Using Magnetizable Fluids
,”
Thermomechanics of Magnetic Fluids
,
B.
Berkovsky
, ed.,
Hemisphere
,
Washington, DC
, pp.
195
211
.
19.
Zahn
,
M.
, and
Rosensweig
,
R. E.
, 1980, “
Stability of Magnetic Fluid Penetration Through a Porous Medium With Uniform Magnetic Field Oblique to the Interface
,”
IEEE Trans. Magn.
0018-9464,
16
, pp.
275
282
.
20.
Vaidyanathan
,
G.
,
Sekar
,
R.
, and
Balasubramanian
,
R.
, 1991, “
Ferroconvective Instability of Fluids Saturating a Porous Medium
,”
Int. J. Eng. Sci.
0020-7225,
29
, pp.
1259
1267
.
21.
Qin
,
Y.
, and
Chadam
,
J.
, 1995, “
A Nonlinear Stability Problem for Ferromagnetic Fluids in a Porous Medium
,”
Appl. Math. Lett.
0893-9659,
8
(
2
), pp.
25
29
.
22.
Borglin
,
S. E.
,
Mordis
,
J.
, and
Oldenburg
,
C. M.
, 2000, “
Experimental Studies of the Flow of Ferrofluid in Porous Media
,”
Transp. Porous Media
0169-3913,
41
, pp.
61
80
.
23.
Saravanan
,
S.
, and
Yamaguchi
,
H.
, 2005, “
Onset of Centrifugal Convection in a Magnetic-Fluid-Saturated Porous Medium
,”
Phys. Fluids
1070-6631,
17
, p.
084105
.
24.
Sunil
,
Sharma
,
D.
, and
Sharma
,
R. C.
, 2005, “
Effect of Dust Particles on Thermal Convection in Ferromagnetic Fluid Saturating a Porous Medium
,”
J. Magn. Magn. Mater.
0304-8853,
288
, pp.
183
195
.
25.
Nield
,
D. A.
,
Junqueira
,
S. L. M.
, and
Lage
,
J. L.
, 1996, “
Forced Convection in a Fluid Saturated Porous Medium Channel With Isothermal or Isoflux Boundaries
,”
Proceedings of the International Conference on Porous Media and Their Applications in Science, Engineering and Industry
,
K.
Vafai
and
P. N.
Shivakumar
, eds.,
Engineering Foundation
,
New York
, pp.
51
70
.
26.
Givler
,
R. A.
, and
Altobelli
,
S. A.
, 1994, “
A Determination of the Effective Viscosity for the Brinkman–Forcheimer Flow Model
,”
J. Fluid Mech.
0022-1120,
258
, pp.
355
370
.
27.
Rajagopal
,
K. R.
,
Ruzicka
,
M.
, and
Srinivas
,
A. R.
, 1996, “
On the Oberbeck–Boussinesq Approximation
,”
Math. Models Meth. Appl. Sci.
0218-2025,
6
(
8
), pp.
1157
1167
.
28.
Finlayson
,
B. A.
, 1972,
Method of Weighted Residuals and Variational Principles
,
Academic
,
New York
.
29.
Sparrow
,
E. M.
,
Goldstein
,
R. J.
, and
Jonsson
,
U. K.
, 1964, “
Thermal Instability in a Horizontal Fluid Layer: Effect of Boundary Conditions and Non-Linear Temperature Profiles
,”
J. Fluid Mech.
0022-1120,
18
, pp.
513
528
.
30.
Shivakumara
,
I. S.
, and
Nanjundappa
,
C. E.
, 2001, “
Onset of Convection in a Sparsely Packed Porous Layer With Throughflow
,”
Arch. Mech.
0373-2029,
53
(
3
), pp.
219
241
.
You do not currently have access to this content.