Heat transfer and pressure drop characteristics of a cross-corrugated (CC) primary surface heat exchanger with different CC passages (P/H=2, θ=60 and 120 deg, called CC2-60 and CC2-120, respectively) in two air sides have been experimentally investigated in this study. It is shown that the corrugation angle (θ) and the ratio of the wavelength P to height H(P/H) are the two key parameters of CC passages to influence the heat transfer and flow friction performances. The heat transfer and friction factor correlations for these two configurations are also obtained with Reynolds numbers ranging from Re=4505500(CC2-60) and Re=5706700(CC2-120). At a certain P/H, the Nusselt number, Nu, and the friction factor, f, are affected by the corrugation angle, θ. The heat transfer performance of CC2-120 are much better than that of CC2-60 while the pressure drop of the former is higher than that of the latter, especially at high Reynolds numbers region. The critical Reynolds numbers at which the flow mode transits from laminar to turbulent in the two different passages are also estimated. Furthermore, in this study a genetic algorithm (GA) has been used to determine the coefficients of heat transfer correlations by separation of total heat transfer coefficient without any information of measured wall temperatures. It is concluded that the GA-based separated heat transfer Nusselt number provides a good agreement with the experimental data; the averaged relative deviation by GA (1.95%) is lower than that by regression analysis (2.84%). The inversely yielding wall temperatures agree well with the measured data in turn supporting the reliability of experimental system and measurements. It is recommended that GA techniques can be used to handle more complicated problems and to obtain both-side heat transfer correlations simultaneously, where the conventional Wilson-plot method cannot be applied.

1.
Utriainen
,
E.
, and
Sundén
,
B.
, 2001, “
A Comparison of Some Heat Transfer Surfaces for Small Gas Turbine Recuperators
,”
Proceedings of the ASME Turbo Expo 2001
.
2.
McDonald
,
C. F.
, 2000, “
Low-Cost Compact Primary Surface Recuperator Concept for Microturbines
,”
Appl. Therm. Eng.
1359-4311,
20
(
5
), pp.
471
497
.
3.
Utriainen
,
E.
, and
Sundén
,
B.
, 2002, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
3
), pp.
550
560
.
4.
Utriainen
,
E.
, and
Sundén
,
B.
, 2000, “
Recuperators and Regenerators in Gas Turbine Systems
,”
Heat Transfer in Gas Turbine Systems
,
WIT
,
Southampton
.
5.
Liang
,
H. X.
,
Wang
,
Q. W.
,
Peng
,
B. T.
,
Luo
,
L. Q.
, and
Feng
,
Z. P.
, 2004, “
Comparison of Heat Transfer Surfaces for Microturbine Recuperators
,”
J. Eng. Phys. Thermophys.
1062-0125,
25
(
4
), pp.
688
690
.
6.
Zhang
,
D. J.
,
Zeng
,
M.
,
Luo
,
L. Q.
, and
Wang
,
Q. W.
, 2005, “
Configuration and Thermal Design of a New Type Exchanger Used in Fresh Air Ventilator
,”
Proceedings of the Second Proseminar of Heat Transfer Technology
, pp.
112
115
, in Chinese.
7.
Wang
,
Q. W.
,
Zhang
,
D. J.
,
Zeng
,
M.
,
Luo
,
L. Q.
, and
Wu
,
Y. N.
, 2005, “
A New Type Primary Surface Heat Exchanger Used in Fresh Air Ventilator
,” Chinese Patent No. ZL200510042697.X.
8.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
, 1985, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
8
), pp.
1469
1479
.
9.
Stasiek
,
J.
,
Collins
,
M. W.
, and
Ciofalo
,
M.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
149
164
.
10.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages—II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
165
192
.
11.
Muley
,
A.
, and
Manglik
,
R. M.
, 1997, “
Enhanced Heat Transfer Characteristics of Single-Phase Flows in a Plate Heat Transfer With Mixed Chevron Plates
,”
J. Enhanced Heat Transfer
,
l4
, pp.
187
201
. 0022-1481
12.
Muley
,
A.
, and
Manglik
,
R. M.
, 1999, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger With Chevron Plates
,”
ASME J. Heat Transfer
0022-1481,
121
(
1
), pp.
110
117
.
13.
Sawyers
,
D. R.
,
Sen
,
M.
, and
Chang
,
H. C.
, 1998, “
Heat Transfer Enhancement in Three-Dimensional Corrugated Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3559
3573
.
14.
Blomerius
,
H.
,
Höisken
,
C.
, and
Mitra
,
N. K.
, 1999, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
314
321
.
15.
Mehrabian
,
M. A.
,
Poulter
,
R.
, and
Quarini
,
G. L.
, 2000, “
Hydrodynamic and Thermal Characteristics of Corrugated Channels: Experimental Approach
,”
Exp. Heat Transfer
0891-6152,
13
, pp.
223
234
.
16.
Mehrabian
,
M.
, and
Poulter
,
R.
, 2000, “
Hydrodynamics and Thermal Characteristics of Corrugated Channels: Computational Approach
,”
Appl. Math. Model.
0307-904X,
24
(
5–6
), pp.
343
364
.
17.
Zimmerer
,
C.
,
Gschwind
,
P.
,
Gaiser
,
G.
, and
Kottke
,
V.
, 2002, “
Comparison of Heat and Mass Transfer in Different Heat Exchanger Geometries With Corrugated Walls
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
269
273
.
18.
Croce
,
G.
, and
Agaro
,
P.
, 2002, “
Numerical Analysis of Forced Convection in Plate and Frame Heat Exchangers
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
12
(
6
), pp.
756
771
.
19.
Metwally
,
H. M.
, and
Manglik
,
R. M.
, 2004, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
10–11
), pp.
2283
2292
.
20.
Zhang
,
L. Z.
, 2005, “
Numerical Study of Periodically Fully Developed Flow and Heat Transfer in Cross-Corrugated Triangular Channels in Transitional Flow Regime
,”
Numer. Heat Transfer, Part A
1040-7782,
48
(
4
), pp.
387
405
.
21.
Zhang
,
L. Z.
, 2005, “
Convective Mass Transport in Cross-Corrugated Membrane Exchangers
,”
J. Membr. Sci.
0376-7388,
260
, pp.
75
83
.
22.
Pacheco-Vega
,
A.
,
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. T.
, 2001, “
Heat Rate Predictions in Humid Air-Water Heat Exchangers Using Correlations and Neural Networks
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
348
354
.
23.
Pacheco-Vega
,
A.
,
Sen
,
M.
, and
Yang
,
K. T.
, 2003, “
Simultaneous Determination of In-and-Over-Tube Heat Transfer Correlations in Heat Exchangers by Global Regression
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1029
1040
.
24.
Wang
,
Q. W.
,
Xie
,
G. N.
,
Peng
,
B. T.
, and
Zeng
,
M.
, 2007, “
Experimental Study and Genetic-Algorithm-Based Correlation on Shell-Side Heat Transfer and Flow Performance of Three Different Types of Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1277
1285
.
25.
Xie
,
G. N.
,
Wang
,
Q. W.
,
Zeng
,
M.
, and
Luo
,
L. Q.
, 2007, “
Heat Transfer Analysis for Shell-and-Tube Heat Exchangers With Experimental Data by Artificial Neural Networks Approach
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1096
1104
.
26.
Xie
,
G. N.
,
Sunden
,
B.
, and
Wang
,
Q. W.
, 2008, “
Optimization of Compact Heat Exchangers by a Genetic Algorithm
,”
Appl. Therm. Eng.
,
28
, pp.
895
906
. 1359-4311
27.
Xie
,
G. N.
,
Wang
,
Q. W.
, and
Sunden
,
B.
, 2008, “
Application of a Genetic Algorithm for Thermal Design of Fin-and-Tube Heat Exchangers
,”
Heat Transfer Eng.
0145-7632,
29
(
7
), pp.
597
607
.
28.
Xie
,
G. N.
,
Wang
,
Q. W.
, and
Zeng
,
M.
, 2007, “
Genetic Algorithm Based Design and Optimization of Outer-Fins and Inner-Fins Tube Heat Exchangers
,” ASME Paper No. GT 2007-27889.
29.
Wang
,
Q. W.
,
Liang
,
H. X.
,
Xie
,
G. N.
,
Luo
,
L. Q.
, and
Feng
,
Z. P.
, 2007, “
Genetic Algorithm Optimization for Primary Surfaces Recuperator of Microturbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
436
442
.
30.
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
, 2006, “
Comparison of Various Methods for Simultaneous Retrieval of Surface Emissivities and Gas Properties in Gray Participating Media
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
829
837
.
31.
Cai
,
W.
,
Pacheco-Vega
,
A.
,
Sen
,
M.
, and
Yang
,
K. T.
, 2006, “
Heat Transfer Correlations by Symbolic Regression
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4352
4359
. 0017-9310
32.
Chen
,
Y. F.
,
Li
,
D. Y.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
, 2005, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1129
1137
.
33.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
, 2004,
Introduction to Engineering
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
Yang
,
S. M.
, and
Tao
,
W. Q.
, 2000,
Heat Transfer
, 3rd ed.,
Higher Education
,
Beijing
.
35.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
36.
Michalewicz
,
Z.
, and
Fogel
,
D. B.
, 2000,
How to Solve It: Modern Heuristics
,
Springer
,
New York
.
37.
Carroll
,
D. L.
, 1996, “
Chemical Laser Modeling With Genetic Algorithms
,”
AIAA J.
0001-1452,
34
, pp.
338
346
.
38.
Carroll
,
D. L.
, 1996, “
Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers
,”
Developments in Theoretical and Applied Mechanics
, Vol.
XVIII
,
H.
Wilson
,
R.
Batra
,
C.
Bert
,
A.
Davis
,
B.
Schapery
,
B.
Stewart
, and
F.
Swinson
, eds.,
School of Engineering, The University of Alabama
,
Tuscaloosa, AL
, pp.
411
424
.
39.
Michalewicz
,
Z.
,
Deb
,
K.
,
Schmidt
,
M.
, and
Stidsen
,
T.
, 2000, “
Test-Case Generator for Constrained Parameter Optimization Techniques
,”
IEEE Trans. Evol. Comput.
1089-778X,
4
, pp.
197
215
.
You do not currently have access to this content.