We use a direct simulation Monte Carlo (DSMC) method to simulate gas heating/cooling and choked subsonic flows in micro/nanoscale channels subject to either constant wall temperature or constant/variable heat flux boundary conditions. We show the effects of applying various boundary conditions on the mass flow rate and the flow parameters. We also show that it is necessary to add a buffer zone at the end of the channel if we wish to simulate more realistic conditions at the channel outlet. We also discuss why applying equilibrium-based Maxwellian distribution on molecules coming from the channel outlet, where the flow is nonequilibrium, will not disturb the DSMC solution. The current velocity, pressure, and mass flow rate results are compared with different analytical solutions of the Navier–Stokes equations. Although there are good agreements between the DSMC results and the analytical solutions in low compressible flow, the analytical solutions yield incorrect velocity and mass flow rate values in short micro/nanochannel flows with high compressibility and/or choked flow conditions.

1.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford
.
2.
Oh
,
C. K.
,
Oran
,
E. S.
, and
Sinkovits
,
R. S.
, 1997, “
Computations of High-Speed, High Knudsen Number Microchannel Flows
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
4
), pp.
497
505
.
3.
Liou
,
W. W.
, and
Fang
,
Y. C.
, 2000, “
Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions
,”
Comput. Model. Eng. Sci.
1526-1492,
1
, pp.
119
128
.
4.
Wang
,
M.
, and
Li
,
Z.
, 2004, “
Simulations for Gas Flows in Microgeometries Using the Direct Simulation Monte Carlo Method
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
975
985
.
5.
Le
,
M.
,
Hassan
,
I.
, and
Esmail
,
N.
, 2006, “
DSMC Simulation of Subsonic Flows in Parallel and Series Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1153
1163
.
6.
Chong
,
X.
, 2006, “
Subsonic Choked Flow in Microchannel
,”
Phys. Fluids
1070-6631,
18
, p.
127104
.
7.
Roohi
,
E.
,
Darbandi
,
M.
, and
Mirjalili
,
V.
, 2008, “
DSMC Solution of Supersonic Scale to Choked Subsonic Flow in Micro to Nano Channels
,”
ASME ICNMM 2008-62282
, Germany, Jun. 23–25.
8.
Hong
,
C.
, and
Asako
,
Y.
, 2008, “
Heat Transfer Characteristics of Gaseous Flows in Microchannel With Negative Heat Flux
,”
Heat Transfer Eng.
0145-7632,
29
(
9
), pp.
805
815
.
9.
Darbandi
,
M.
, and
Vakilipour
,
S.
, 2007, “
Developing Consistent Inlet Boundary Conditions to Study the Entrance Zone in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
3
), pp.
596
607
.
10.
Vakilipour
,
S.
, and
Darbandi
,
M.
, 2009, “
Advancement in Numerical Study of Gas Flow and Heat Transfer in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
23
(
1
), pp.
205
208
.
11.
Darbandi
,
M.
, and
Vakilipour
,
S.
, 2009, “
Solution of Thermally Developing Zone in Short Micro/Nano Scale Channels
,”
ASME J. Heat Transfer
0022-1481,
131
(
4
), p.
044501
.
12.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flow in Long Microchannel
,”
J. Microelectromech. Syst.
1057-7157,
6
, pp.
167
178
.
13.
Cai
,
C.
,
Boyd
,
I. D.
,
Fan
,
J.
, and
Candler
,
G. V.
, 2000, “
Direct Simulation Methods for Low-Speed Microchannel Flows
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
3
), pp.
368
378
.
14.
Hadjiconstantinou
,
N. G.
, and
Simek
,
O.
, 2002, “
Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
356
364
.
15.
Wang
,
Q. W.
,
Yan
,
X.
, and
He
,
Q.
, 2008, “
Heat-Flux-Specified Boundary Treatment for Gas Flow and Heat Transfer in Microchannel Using Direct Simulation Monte Carlo Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
1109
1127
.
16.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N.
, 2005,
Micro Flows and Nano Flows: Fundamentals and Simulation
,
Springer-Verlag
,
New York
.
17.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 2001, “
Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels
,”
J. Fluid Mech.
0022-1120,
437
, pp.
29
43
.
18.
Graur
,
I. A.
,
Meolans
,
J. G.
, and
Zeitoun
,
D. E.
, 2006, “
Analytical and Numerical Description for Isothermal Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
1613-4982,
2
, pp.
64
77
.
19.
Lofthouse
,
A.
,
Boyd
,
I.
, and
Wright
,
M.
, 2007, “
Effects of Continuum Breakdown on Hypersonic Aerothermodynamics
,”
Phys. Fluids
1070-6631,
19
, p.
027105
.
20.
Garcia
,
A.
, and
Aldert
,
B.
, 1998, “
Generation of the Chapman-Enskog Distribution
,”
J. Comput. Phys.
0021-9991,
140
, pp.
66
70
.
21.
Harley
,
J.
,
Huang
,
Y.
,
Bau
,
H.
, and
Zemel
,
J.
, 1995, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
22.
Uribe
,
F. J.
, and
Garcia
,
A. L.
, 1999, “
Burnett Description for Plane Poiseuille Flow
,”
Phys. Rev. E
1063-651X,
60
(
4
), pp.
4063
4078
.
23.
Struchtrup
,
H.
, and
Torrilhon
,
M.
, 2008, “
Higher-Order Effects in Rarefied Channel Flows
,”
Phys. Rev. E
1063-651X,
78
, p.
046301
.
24.
Torrilhon
,
M.
, and
Struchtrup
,
H.
, 2009, “
Modeling Micro Mass and Heat Transfer for Gases Using Extended Continuum Equations
,”
ASME J. Heat Transfer
0022-1481,
131
(
3
), p.
033103
.
25.
Darbandi
,
M.
, and
Schneider
,
G. E.
, 2000, “
Performance of an Analogy-Based All-Speed Procedure Without Any Explicit Damping
,”
Comput. Mech.
0178-7675,
26
(
5
), pp.
459
469
.
26.
Darbandi
,
M.
,
Roohi
,
E.
, and
Mokarizadeh
,
V.
, 2008, “
Conceptual Linearization of Euler Governing Equations to Solve High Speed Compressible Flow Using a Pressure-Based Method
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
24
(
2
), pp.
583
604
.
You do not currently have access to this content.