The present article introduces a new method to solve the radiative transfer equation (RTE). First, a finite element discretization of the solid angle dependence is derived, wherein the coefficients of the finite element approximation are functions of the spatial coordinates. The angular basis functions are defined according to finite element principles on subdivisions of the octahedron. In a second step, these spatially dependent coefficients are discretized by spatial finite elements. This approach is very attractive, since it provides a concise derivation for approximations of the angular dependence with an arbitrary number of angular nodes. In addition, the usage of high-order angular basis functions is straightforward. In the current paper, the governing equations are first derived independently of the actual angular approximation. Then, the design principles for the angular mesh are discussed and the parameterization of the piecewise angular basis functions is derived. In the following, the method is applied to one-dimensional and two-dimensional test cases, which are commonly used for the validation of approximation methods of the RTE. The results reveal that the proposed method is a promising alternative to the well-established practices like the discrete ordinates method (DOM) and provides highly accurate approximations. A test case, which is known to exhibit the ray effect in the DOM, verifies the ability of the new method to avoid ray effects.

1.
Viskanta
,
R.
, and
Mengüç
,
M. P.
, 1987, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
13
(
2
), pp.
97
160
.
2.
Mishra
,
S. C.
, and
Prasad
,
M.
, 1998, “
Radiative Heat Transfer in Participating Media—A Review
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
23
(
2
), pp.
213
232
.
3.
Viskanta
,
R.
, 2008, “
Computation of Radiative Transfer in Combustion Systems
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
18
(
3/4
), pp.
415
442
.
4.
Chandrasekhar
,
S.
, 1960,
Radiative Transfer
,
Dover
,
New York
.
5.
Davison
,
B.
, 1958,
Neutron Transport Theory
,
Clarendon
,
Oxford
.
6.
Lathrop
,
K. D.
, 1968, “
Ray Effects in Discrete Ordinates Equations
,”
Nucl. Sci. Eng.
0029-5639,
32
, pp.
357
369
.
7.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
8.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
419
425
.
9.
Ramankutty
,
M. A.
, and
Crosbie
,
A. L.
, 1997, “
Modified Discrete Ordinates Solution of Radiative Transfer in Two-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
57
(
1
), pp.
107
140
.
10.
Gradstejn
,
I. S.
, and
Ryzik
,
I. M.
, 2007,
Table of Integrals, Series, and Products
, 7th ed.,
Academic
,
New York
.
11.
Modest
,
M.
, and
Yang
,
J.
, 2008, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
(
9
), pp.
1641
1666
.
12.
Song
,
T. -H.
, and
Park
,
C. W.
, 1992, “
Formulation and Application of the Second-Order Discrete Ordinate Method
,”
Transport Phenomena and Science
,
B. -X.
Wang
, ed.,
Higher Education
,
Beijing
, pp.
833
841
.
13.
Ohnishi
,
T.
, 1972, “
Finite-Element Solution Techniques for Neutron-Transport Equations
,”
Proceedings of the Conference on Numerical Reactor Calculations
, Int. Atomic Energy Agency, pp.
629
638
.
14.
Briggs
,
L. L.
,
Miller
,
W. F.
, and
Lewis
,
E. E.
, 1975, “
Ray-Effect Mitigation in Discrete Ordinate-Like Angular Finite Element Approximations in Neutron-Transport
,”
Nucl. Sci. Eng.
0029-5639,
57
, pp.
205
217
.
15.
Becker
,
R.
,
Koch
,
R.
, and
Bauer
,
H. -J.
, 2007, “
Solution of the Radiative Transfer Equation by a Finite Element Discretization of the Solid Angle
,”
Proceedings of the Fifth International Symposium on Radiative Transfer
, ICHMT.
16.
Coelho
,
P.
, 2005, “
Fundamentals of a New Method for the Solution of the Radiative Transfer Equation
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
809
821
.
17.
Pontaza
,
J.
, and
Reddy
,
J.
, 2005, “
Least-Squares Finite Element Formulations for One-Dimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
95
, pp.
387
406
.
18.
Cui
,
X.
, and
Li
,
B. Q.
, 2005, “
A Mixed-Mesh and New Angular Space Discretization Scheme of Discontinuous Finite Element Method for Three-Dimensional Radiative Transfer in Participating Media
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1236
1244
.
19.
Widmer
,
G.
, and
Hiptmair
,
R.
, 2007, “
Sparse Finite Elements for Non-Scattering Radiative Transfer in Diffuse Regimes
,”
Proceedings of the Fifth International Symposium on Radiative Transfer
, ICHMT.
20.
Lewis
,
E. E.
, and
Miller
,
W. F.
, 1984,
Computational Methods of Neutron Transport
,
Wiley Interscience
,
New York
.
21.
Eriksson
,
K.
,
Estep
,
D.
,
Hansho
,
P.
, and
Johnson
,
C.
, 1996,
Computational Differential Equations
,
Cambridge University Press
,
Cambridge, England
.
22.
Fiveland
,
W. A.
, and
Jessee
,
J. P.
, 1994, “
Finite-Element Formulation of the Discrete-Ordinate Method for Multidimensional Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
426
433
.
23.
Koch
,
R.
, and
Becker
,
R.
, 2004, “
Evaluation of Quadrature Schemes for the Discrete Ordinate Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
(
4
), pp.
423
435
.
24.
MathWorks Inc.
, 2006, “
MATLAB—The Language of Technical Computing
.”
25.
van der Vorst
,
H. A.
, 1992, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
13
, pp.
631
644
.
26.
Koch
,
R.
,
Krebs
,
W.
,
Wittig
,
S.
, and
Viskanta
,
R.
, 1995, “
A Parabolic Formulation of the Discrete Ordinates Method for the Treatment Of Complex Geometries
,”
Proceedings of the First International Symposium on Radiative Transfer
,
M. P.
Mengüç
, ed., ICHMT,
Begell House
,
Redding, CT
, pp.
43
61
.
27.
Fiveland
,
W. A.
, 1991, “
The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering
,”
Fundamentals of Radiation Heat Transfer
,
W. A.
Fiveland
,
A. L.
Crosbie
,
A. M.
Smith
, and
T. F.
Smith
, eds.,
ASME
,
New York
,
HTD-160
, pp.
89
96
.
28.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
29.
Heaslet
,
M. A.
, and
Warming
,
R. F.
, 1965, “
Radiative Transport and Wall Temperature Slip in an Absorbing Planar Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, pp.
979
994
.
30.
Heaslet
,
M. A.
, and
Warming
,
R. F.
, 1967, “
Radiative Transfer in an Absorbing Planar Medium II—Predictions of Radiative Source Functions
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
1413
1427
.
31.
Crosbie
,
A. L.
, and
Schenker
,
R. G.
, 1984, “
Radiative Transfer in a Two-Dimensional Rectangular Medium Exposed to Diffuse Radiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
31
(
4
), pp.
339
372
.
You do not currently have access to this content.