In this paper, equilibrium molecular dynamics simulations were performed on Au-SAM (self-assembly monolayer)-Au junctions. The SAM consisted of alkanedithiol (S(CH2)nS) molecules. The out-of-plane (z-direction) thermal conductance and in-plane (x- and y-direction) thermal conductivities were calculated. The simulation finite size effect, gold substrate thickness effect, temperature effect, normal pressure effect, molecule chain length effect, and molecule coverage effect on thermal conductivity/conductance were studied. Vibration power spectra of gold atoms in the substrate and sulfur atoms in the SAM were calculated, and vibration coupling of these two parts was analyzed. The calculated thermal conductance values of Au-SAM-Au junctions are in the range of experimental data on metal-nonmetal junctions. The temperature dependence of thermal conductance has a similar trend to experimental observations. It is concluded that the Au-SAM interface resistance dominates thermal energy transport across the junction, while the substrate is the dominant media in which in-plane thermal energy transport happens.

1.
Loo
,
Y.
,
Hsu
,
J. W. P.
,
Willett
,
R. L.
,
Baldwin
,
K. W.
,
West
,
K. W.
, and
Rogers
,
J. A.
, 2002, “
High-Resolution Transfer Printing on GaAs Surfaces Using Alkane Dithiol Monolayers
,”
J. Vac. Sci. Technol. B
1071-1023,
20
, pp.
2853
2856
.
2.
Nakagawa
,
O. S.
,
Ashok
,
S.
,
Sheen
,
C. W.
,
Martensson
,
J.
, and
Allara
,
D. L.
, 1991, “
GaAs Interface With Octadecyl Thiol Self-Assembled Monolayer
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
30
, pp.
3759
3762
.
3.
Koike
,
A.
, and
Yoneya
,
M.
, 1996, “
Molecular Dynamics Simulations of Sliding Friction of Langmuir-Blodgett Monolayers
,”
J. Chem. Phys.
0021-9606,
105
, pp.
6060
6067
.
4.
McGuiness
,
C. L.
,
Shaporenko
,
A.
,
Mars
,
C. K.
,
Uppili
,
S.
,
Zharnikov
,
M.
, and
Allara
,
D. L.
, 2006, “
Molecular Self-Assembly at Bare Semiconductor Surfaces: Preparation and Characterization of Highly Organized Octadecanethiolate Monolayers on GaAs(001)
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
5231
5243
.
5.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braum
,
P. V.
, 2006, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
186101
.
6.
Wang
,
Z.
,
Carter
,
J. A.
,
Lagutchev
,
A.
,
Koh
,
Y. K.
,
Seong
,
N. H.
,
Cahill
,
D. G.
, and
Dlott
,
D. D.
, 2007, “
Ultrafast Flash Thermal Conductance of Molecular Chains
,”
Science
0036-8075,
317
(
5839
), pp.
787
790
.
7.
Patel
,
H. A.
,
Garde
,
S.
, and
Keblinski
,
P.
, 2005, “
Thermal Resistance of Nanoscopic Liquid-Liquid Interfaces: Dependence on Chemistry and Molecular Architecture
,”
Nano Lett.
1530-6984,
5
, pp.
2225
2231
.
8.
Yourdshahyan
,
Y.
,
Zhang
,
H. K.
, and
Rappe
,
A. M.
, 2001, “
N-Alkyl Thiol Head-Group Interactions With the Au(111) Surface
,”
Phys. Rev. B
0163-1829,
63
, p.
081405
.
9.
Gronbeck
,
H.
,
Curioni
,
A.
, and
Andreoni
,
W.
, 2000, “
Thiols and Disulfides on the Au(111) Surface: The Headgroup-Gold Interaction
,”
J. Am. Chem. Soc.
0002-7863,
122
, pp.
3839
3842
.
10.
Sheen
,
C. W.
,
Shi
,
J.
,
Martensson
,
J.
,
Parikh
,
A. N.
, and
Allara
,
D. L.
, 1992, “
A New Class of Organized Self-Assembled Monolayers: Alkane Thiols on GaAs(100)
,”
J. Am. Chem. Soc.
0002-7863,
114
, pp.
1514
1515
.
11.
Andreoni
,
W.
,
Curioni
,
A.
, and
Gronbeck
,
H.
, 2000, “
Density Functional Theory Approach to Thiols and Disulfides on Gold: Au(111) Surface and Clusters
,”
Int. J. Quantum Chem.
0020-7608,
80
, pp.
598
608
.
12.
Reese
,
S.
, and
Fox
,
M. A.
, 1998, “
Self-Assembled Monolayers on Gold of Thiols Incorporating Conjugated Terminal Groups
,”
J. Phys. Chem. B
1089-5647,
102
, pp.
9820
9824
.
13.
Hautman
,
J.
, and
Klein
,
M. L.
, 1989, “
Simulation of a Monolayer of Alkyl Thiol Chains
,”
J. Chem. Phys.
0021-9606,
91
, pp.
4994
5001
.
14.
Cahill
,
D. G.
,
Ford
,
W. K.
, and
Goodson
,
K. E.
, 2003, “
Nanoscale thermal transport
,”
J. Appl. Phys.
0021-8979,
93
(
2
), pp.
793
818
.
15.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Oxford University Press
,
New York
.
16.
Volz
,
S.
,
Saulnier
,
J. B.
,
Lallemand
,
M.
,
Perrin
,
B.
,
Depondt
,
P.
, and
Mareschal
,
M.
, 1996, “
Transient Fourier-Law Deviation by Molecular Dynamics in Solid Argon
,”
Phys. Rev. B
0163-1829,
54
, pp.
340
347
.
17.
Poetzsch
,
R. H. H.
, and
Böttger
,
H.
, 1994, “
Interplay of Disorder and Anharmonicity in Heat Conduction: Molecular Dynamics Study
,”
Phys. Rev. B
0163-1829,
50
, pp.
15757
15763
.
18.
Crocombette
,
J. P.
,
Dumazer
,
G.
, and
Hoang
,
N. Q.
, 2007, “
Molecular Dynamics Modeling of the Thermal Conductivity of Irradiated SiC as a Function of Cascade Overlap
,”
J. Appl. Phys.
0021-8979,
101
, p.
023527
.
19.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations, Part II. Complex Silica Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1799
1816
.
20.
Li
,
J.
,
Porter
,
L.
, and
Yip
,
S.
, 1998, “
Atomistic Modeling of Finite-Temperature Properties of Crystalline β–SiC, II. Thermal Conductivity and Effects of Point Defects
,”
J. Nucl. Mater.
0022-3115,
255
, pp.
139
152
.
21.
McGaughey
,
A. J. H.
, and
Li
,
J.
, 2006, “
Molecular Dynamics Prediction of the Thermal Resistance of Solid-Solid Interfaces in Superlattices
,” ASME Paper No. IMECE2006-13590.
22.
Barrat
,
J. L.
, and
Chiaruttini
,
F.
, 2003, “
Kapitza Resistance at the Liquid-Solid Interface
,”
Mol. Phys.
0026-8976,
101
, pp.
1605
1610
.
23.
Puech
,
L.
,
Bonfait
,
G.
, and
Castaing
,
B.
, 1986, “
Mobility of the H3e Solid-Liquid Interface: Experiment and Theory
,”
J. Low Temp. Phys.
0022-2291,
62
, pp.
315
327
.
24.
Kubo
,
R.
,
Yokota
,
M.
, and
Nakajima
,
S.
, 1957, “
Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance
,”
J. Phys. Soc. Jpn.
0031-9015,
12
, pp.
1203
1211
.
25.
Lukes
,
J. R.
, and
Zhong
,
H.
, 2007, “
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
705
716
.
26.
Xu
,
X.
,
Cheng
,
C.
, and
Chowdhury
,
I. H.
, 2004, “
Molecular Dynamics Study of Phase Change Mechanisms During Femtosecond Laser Ablation
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
727
734
.
27.
Pan
,
H.
,
Ko
,
S. H.
, and
Grigoropoulos
,
C. P.
, 2008, “
The Solid-State Neck Growth Mechanisms in Low Energy Laser Sintering of Gold Nanoparticles: A Molecular Dynamics Simulation Study
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
092404
.
28.
Stevens
,
R. J.
,
Norris
,
P. M.
, and
Zhigilei
,
L. V.
, 2004, “
Molecular-Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels
,”
Proceeding of the IMECE04
.
29.
Tien
,
C. L.
,
Lukes
,
J. R.
, and
Chou
,
F. C.
, 1998, “
Molecular Dynamics Simulation of Thermal Transport in Solids
,”
Microscale Thermophys. Eng.
1089-3954,
2
, pp.
133
137
.
30.
Huang
,
B. L.
,
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2007, “
Thermal Conductivity of Metal-Organic Framework 5 (MOF-5): Part I. Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
405
411
.
31.
Leach
,
A. R.
, 1996,
Molecular Modeling Principles and Applications
,
Addison-Wesley
,
Reading, MA
.
32.
Sung
,
I. H.
, and
Kim
,
D. E.
, 2005, “
Molecular Dynamics Simulation Study of the Nano-Wear Characteristics of Alkanethiol Self-Assembled Monolayers
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
81
, pp.
109
114
.
33.
Mahaffy
,
R.
,
Bhatia
,
R.
, and
Garrison
,
B. J.
, 1997, “
Diffusion of a Butanethiolate Molecule on a Au(111) Surface
,”
J. Phys. Chem. B
1089-5647,
101
, pp.
771
773
.
34.
Lincoln
,
R. C.
,
Koliwad
,
K. M.
, and
Ghate
,
P. B.
, 1967, “
Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals
,”
Phys. Rev.
0096-8250,
157
, pp.
463
466
.
35.
Rieth
,
M.
, 2003,
Nano-Engineering in Science and Technology
,
World Scientific
,
Singapore
.
36.
Rappe
,
A. K.
,
Casewit
,
C. J.
,
Colwell
,
K. S.
,
Goddard
,
W. A.
, and
Skiff
,
W. M.
, 1992, “
UFF, A Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations
,”
J. Am. Chem. Soc.
0002-7863,
114
, pp.
10024
10035
.
37.
Zhang
,
L.
,
Goodard
,
W. A.
, and
Jiang
,
S.
, 2002, “
Molecular Simulation Study of the c(4×2). Superlattice Structure of Alkanethiol Self-Assembled Monolayers on Au(111)
,”
J. Chem. Phys.
0021-9606,
117
, pp.
7342
7349
.
38.
Gohel
,
V. B.
,
Acharya
,
C. K.
, and
Jani
,
A. R.
, 1985, “
On Phonon Dispersion in Noble Metals
,”
J. Phys. F: Met. Phys.
0305-4608,
15
, pp.
279
285
.
39.
Henry
,
A.
, and
Chen
,
G.
, 2008, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
0031-9007,
101
, p.
235502
.
40.
Gomes
,
C. J.
,
Madrid
,
M.
,
Goicochea
,
J. V.
, and
Amon
,
C. H.
, 2006, “
In-Plane and Out-of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1114
1121
.
41.
Kaburaki
,
H.
,
Li
,
J.
, and
Yip
,
S.
, 1999, “
Thermal Conductivity of Solid Argon by Classical Molecular Dynamics
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
538
, pp.
503
508
.
42.
Wang
,
R. Y.
,
Segalman
,
R. A.
, and
Majumdar
,
A.
, 2006, “
Room Temperature Thermal Conductance of Alkanedithiol Self-Assembled Monolayers
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
173113
.
43.
Wang
,
R.
, private communication.
44.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
45.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
, 2003, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
0163-1829,
67
, p.
054302
.
46.
Smith
,
A. N.
,
Hostetler
,
J. L.
, and
Norris
,
P. M.
, 2000, “
Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
4
, pp.
51
60
.
47.
Gale
,
J. D.
, 1997, “
GULP—A Computer Program for the Symmetry Adapted Simulation of Solids
,”
J. Chem. Soc., Faraday Trans.
0956-5000,
93
, pp.
629
637
.
48.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
, and
Keblinski
,
P.
, 2005, “
Relaxation of Vibrational Energy in Fullerene Suspensions
,”
Chem. Phys. Lett.
0009-2614,
407
, pp.
129
134
.
You do not currently have access to this content.