The spectral collocation method for transient combined radiation and conduction heat transfer in a planar participating medium with spatially variable refractive index is introduced and formulated. The angular dependence of the problem is discretized by discrete ordinates method and the space dependence is expressed by Chebyshev polynomial and discretized by spectral collocation method. Due to the exponential convergence of spectral methods, very high accuracy can be obtained even using a small resolution for present problem. Numerical results in one-dimensional planar slab by Chebyshev collocation spectral-discrete ordinates method (SP-DOM) are compared with those available data in references. Effects of various parameters such as the variable thermal conductivity, the scattering albedo, the emissivity of boundary, the conduction-radiation parameter, the optical thickness, and the graded index are studied for absorbing, emitting, and anisotropic scattering medium. The SP-DOM has been found to successfully and efficiently deal with transient combined radiation and conduction heat transfer problem in graded index medium.

1.
Abdallah
,
P. B.
, and
Le Dez
,
V.
, 2000, “
Radiative Flux Field Inside an Absorbing-Emitting Semi-Transparent Slab With Variable Spatial Refractive Index at Radiative Conductive Coupling
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
67
, pp.
125
137
.
2.
Xia
,
X. L.
,
Huang
,
Y.
, and
Zhang
,
X. B.
, 2002, “
Simultaneous Radiation and Conduction Heat Transfer in a Graded Index Semitransparent Slab With Gray Boundaries
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2673
2688
.
3.
Huang
,
Y.
,
Xia
,
X. L.
, and
Tan
,
H. P.
, 2004, “
Coupled Radiation and Conduction in a Graded Index Layer With Specular Surfaces
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
281
285
.
4.
Huang
,
Y.
, 2002, “
A Study on the Thermal Radiative Transfer in Gradient Index Semitransparent Medium
,” Ph.D. thesis, Harbin Institute of Technology, Harbin, People’s Republic of China.
5.
Liu
,
L. H.
,
Tan
,
J. Y.
, and
Li
,
B. X.
, 2006, “
Meshless Approach for Coupled Radiative and Conductive Heat Transfer in One-Dimensional Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
101
, pp.
237
248
.
6.
Liu
,
L. H.
, and
Tan
,
H. P.
, 2004, “
Transient Temperature Response in Semitransparent Variable Refractive Index Medium Subjected to a Pulse Irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
83
, pp.
333
344
.
7.
Yi
,
H. L.
,
Tan
,
H. P.
,
Luo
,
J. F.
, and
Dong
,
S. K.
, 2005, “
Effects of Graded Refractive Index on Steady and Transient Heat Transfer Inside a Scattering Semitransparent Slab
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
, pp.
363
381
.
8.
Tan
,
H. P.
,
Yi
,
H. L.
,
Luo
,
J. F.
, and
Zhang
,
H. C.
, 2006, “
Transient Coupled Heat Transfer Inside a Scattering Medium With Graded Refractive Index
,”
J. Thermophys. Heat Transfer
0887-8722,
20
, pp.
583
594
.
9.
Yi
,
H. L.
,
Tan
,
H. P.
,
Zhang
,
H. C.
, and
Luo
,
J. F.
, 2006, “
Ray-Tracing/Nodal-Analyzing Model for Transient Thermal Behavior of a Scattering Medium With a Variable Refractive Index
,”
Numer. Heat Transfer, Part A
1040-7782,
49
, pp.
607
634
.
10.
Mishra
,
S. C.
,
Krishna
,
N. A.
,
Gupta
,
N.
, and
Chaitanya
,
G. R.
, 2008, “
Combined Conduction and Radiation Heat Transfer With Variable Thermal Conductivity and Variable Refractive Index
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
83
90
.
11.
Luo
,
J. F.
,
Tan
,
H. P.
,
Ruan
,
L. M.
, and
Tong
,
T. W.
, 2003, “
Refractive Index Effects on Heat Transfer in Multilayer Scattering Composite
,”
J. Thermophys. Heat Transfer
0887-8722,
17
, pp.
407
419
.
12.
Tan
,
H. P.
,
Luo
,
J. F.
,
Ruan
,
L. M.
, and
Yu
,
Q. Z.
, 2003, “
Transient Coupled Heat Transfer in a Multi-layer Composite With Opaque Specular Surfaces and Semitransparent Specular Interfaces
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
209
222
.
13.
Yi
,
H. L.
,
Xie
,
M.
, and
Tan
,
H. P.
, 2008, “
Transient Coupled Heat Transfer in an Anisotropic Scattering Composite Slab With Semitransparent Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5918
5930
.
14.
Gottlieb
,
D.
, and
Orszag
,
S. A.
, 1977,
Numerical Analysis of Spectral Methods: Theory and Applications
,
SIAM
,
Philadelphia, PA
.
15.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
, 2006,
Spectral Methods: Fundamentals in Single Domains
,
Springer-Verlag
,
Berlin, Germany
.
16.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
, 1988,
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
,
New York
.
17.
Peyret
,
R.
, 2002,
Spectral Methods for Incompressible Viscous Flow
,
Springer-Verlag
,
New York
.
18.
Belgacem
,
F. B.
, and
Grundmann
,
M.
, 1998, “
Approximation of the Wave and Electromagnetic Diffusion Equations by Spectral Methods
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
, pp.
13
32
.
19.
Shan
,
X. W.
,
Montgomery
,
D.
, and
Chen
,
H. D.
, 1991, “
Nonlinear Magnetohydrodynamics by Galerkin-Method Computation
,”
Phys. Rev. A
1050-2947,
44
, pp.
6800
6818
.
20.
Shan
,
X. W.
, 1994, “
Magnetohydrodynamic Stabilization Through Rotation
,”
Phys. Rev. Lett.
0031-9007,
73
, pp.
1624
1627
.
21.
Zenouzi
,
M.
, and
Yener
,
Y.
, 1992, “
Simultaneous Radiation and Natural Convection in Vertical Slots
,”
Developments in Radiative Heat Transfer
, ASME HTD-Vol.
203
, pp.
179
186
.
22.
Kuo
,
D. C.
,
Morales
,
J. C.
, and
Ball
,
K. S.
, 1999, “
Combined Natural Convection and Volumetric Radiation in a Horizontal Annulus: Spectral and Finite Volume Predictions
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
610
615
.
23.
de Oliveira
,
J. V. P.
,
Cardona
,
A. V.
,
Vilhena
,
M. T.
, and
Barros
,
R. C.
, 2002, “
A Semi-Analytical Numerical Method for Time-Dependent Radiative Transfer Problems in Slab Geometry With Coherent Isotropic Scattering
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
, pp.
55
62
.
24.
Lara
,
F. E.
, and
Rieutord
,
M.
, 2007, “
The Dynamics of a Fully Radiative Rapidly Rotating Star Enclosed Within a Spherical Box
,”
Astron. Astrophys.
0004-6361,
470
, pp.
1013
1022
.
25.
Modest
,
M. F.
, and
Yang
,
J.
, 2008, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
1641
1666
.
26.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2006, “
Least-Squares Spectral Element Method for Radiative Heat Transfer in Semitransparent Media
,”
Numer. Heat Transfer, Part B
1040-7790,
50
, pp.
473
489
.
27.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2007, “
Solution of Radiative Heat Transfer in Graded Index Media by Least Square Spectral Element Method
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2634
2642
.
28.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2007, “
Spectral Element Approach for Coupled Radiative and Conductive Heat Transfer in Semitransparent Medium
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1417
1424
.
29.
Li
,
B. W.
,
Sun
,
Y. S.
, and
Yu
,
Y.
, 2008, “
Iterative and Direct Chebyshev Collocation Spectral Methods for One-Dimensional Radiative Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5887
5894
.
30.
Sun
,
Y. S.
, and
Li
,
B. W.
, 2009, “
Chebyshev Collocation Spectral Method for One-Dimensional Radiative Heat Transfer in Graded Index Media
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
691
698
.
31.
Li
,
B. W.
,
Sun
,
Y. S.
, and
Zhang
,
D. W.
, 2009, “
Chebyshev Collocation Spectral Methods for Coupled Radiation and Conduction in a Concentric Spherical Participating Medium
,”
ASME J. Heat Transfer
0022-1481,
131
, pp.
062701
9
.
32.
Sun
,
Y. S.
, and
Li
,
B. W.
, “
Chebyshev Collocation Spectral Approach for Combined Radiation and Conduction Heat Transfer in One-Dimensional Semitransparent Medium With Graded Index
,”
Int. J. Heat Mass Transfer
0017-9310, in press.
33.
Lemonnier
,
D.
, and
Le Dez
,
V.
, 2002, “
Discrete Ordinates Solution of Radiative Transfer Across a Slab With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
, pp.
195
204
.
34.
Kim
,
T. K.
, and
Lee
,
H.
, 1988, “
Effect of Anisotropic Scattering on Radiative Heat Transfer in Two-Dimensional Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1711
1721
.
35.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
36.
Pontaza
,
J. P.
, and
Reddy
,
J. N.
, 2005, “
Least-Squares Finite Element Formulations for One-Dimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
95
, pp.
387
406
.
You do not currently have access to this content.