This technical note presents an introduction to boundary-condition-independent reduced-order modeling of complex electronic components using the proper orthogonal decomposition (POD)-Galerkin approach. The current work focuses on how the POD methodology can be used along with the finite volume method to generate reduced-order models that are independent of their boundary conditions. The proposed methodology is demonstrated for the transient 1D heat equation, and preliminary results are presented.
Issue Section:
Technical Briefs
1.
Lasance
, C.
, Vinke
, H.
, Rosten
, H.
, and Weiner
, K. L.
, 1995, “A Novel Approach for the Thermal Characterization of Electronic Parts
,” Proceedings of the SEMITHERM XI
, San Jose, CA, pp. 1
–9
.2.
Sabry
, M. N.
, 2007, “Flexible Profile Compact Thermal Models for Practical Geometries
,” ASME J. Electron. Packag.
1043-7398, 129
, pp. 256
–259
.3.
Codecasa
, L.
, D’Amore
, D.
, Maffezzoni
, P.
, and Batty
, W.
, 2002, “Multi-Point Moment Matching Reduction of Distributed Thermal Networks
,” Eighth International Workshop on Thermal Investigation of ICs and Systems, THERMINIC
, Madrid, Spain, pp. 231
–234
.4.
Augustin
, A.
, Hauck
, T.
, Maj
, B.
, Czernohorsky
, J.
, Rudnyi
, E. -B.
, and Korvink
, J. -G.
, 2006, “Model Reduction for Power Electronics Systems With Multiple Heat Sources
,” Proceedings of 12th International Workshop on Thermal investigations of ICs, THERMINIC
, p. 113
–117
.5.
Shapiro
, B.
, 2003, “Creating Compact Models of Complex Electronic Systems: An Overview and Suggested Use of Existing Model Reduction and Experimental System Identification Tools
,” IEEE Trans. Compon. Packag. Technol.
1521-3331, 26
(1
), pp. 165
–172
.6.
Astrid
, P.
, Huisman
, L.
, Weiland
, S.
, and Backx
, A. C. P. M.
, 2002, “Reduction and Predictive Control Design for a Computational Fluid Dynamics Model
,” Proceedings of the 41st IEEE Conference on Decision and Control
, Vol. 3
, pp. 3378
–3383
.7.
Ghia
, U.
, Shirooni
, S.
, Ghia
, K.
, and Osswald
, G.
, 1991, “Examination of a Vortex-Ring Interaction Phenomenon in an Axisymmetric Flow
,” AIAA Paper No. AIAA-1991–548.8.
Versteeg
, H. K.
, and Malalasekera
, W. K.
, 1995, An Introduction to Computational Fluid Dynamics, The Finite Volume Method
, Pearson Prentice-Hall
, Essex
.9.
Sirovich
, L.
, 1987, “Turbulence and Dynamics of Coherent Structures, Part I: Coherent Structures
,” Q. Appl. Math.
0033-569X, XLV
, pp. 561
–571
.10.
Kunisch
, K.
, and Volkwein
, S.
, 2002, “Galerkin Proper Orthogonal Decomponsition Methods for a General Equation in Fluid Dynamics
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429, 40
, pp. 492
–515
.11.
Christensen
, E. A.
, Brons
, M.
, and Sorensen
, J. N.
, 1999, “Evaluation of Proper Orthogonal Decomposition-Based Techniques Applied to Parameter Dependent Nonturbulent Flows
,” SIAM J. Sci. Comput. (USA)
1064-8275, 21
(4
), pp. 1419
–1434
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.