This technical note presents an introduction to boundary-condition-independent reduced-order modeling of complex electronic components using the proper orthogonal decomposition (POD)-Galerkin approach. The current work focuses on how the POD methodology can be used along with the finite volume method to generate reduced-order models that are independent of their boundary conditions. The proposed methodology is demonstrated for the transient 1D heat equation, and preliminary results are presented.

1.
Lasance
,
C.
,
Vinke
,
H.
,
Rosten
,
H.
, and
Weiner
,
K. L.
, 1995, “
A Novel Approach for the Thermal Characterization of Electronic Parts
,”
Proceedings of the SEMITHERM XI
, San Jose, CA, pp.
1
9
.
2.
Sabry
,
M. N.
, 2007, “
Flexible Profile Compact Thermal Models for Practical Geometries
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
256
259
.
3.
Codecasa
,
L.
,
D’Amore
,
D.
,
Maffezzoni
,
P.
, and
Batty
,
W.
, 2002, “
Multi-Point Moment Matching Reduction of Distributed Thermal Networks
,”
Eighth International Workshop on Thermal Investigation of ICs and Systems, THERMINIC
, Madrid, Spain, pp.
231
234
.
4.
Augustin
,
A.
,
Hauck
,
T.
,
Maj
,
B.
,
Czernohorsky
,
J.
,
Rudnyi
,
E. -B.
, and
Korvink
,
J. -G.
, 2006, “
Model Reduction for Power Electronics Systems With Multiple Heat Sources
,”
Proceedings of 12th International Workshop on Thermal investigations of ICs, THERMINIC
, p.
113
117
.
5.
Shapiro
,
B.
, 2003, “
Creating Compact Models of Complex Electronic Systems: An Overview and Suggested Use of Existing Model Reduction and Experimental System Identification Tools
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
165
172
.
6.
Astrid
,
P.
,
Huisman
,
L.
,
Weiland
,
S.
, and
Backx
,
A. C. P. M.
, 2002, “
Reduction and Predictive Control Design for a Computational Fluid Dynamics Model
,”
Proceedings of the 41st IEEE Conference on Decision and Control
, Vol.
3
, pp.
3378
3383
.
7.
Ghia
,
U.
,
Shirooni
,
S.
,
Ghia
,
K.
, and
Osswald
,
G.
, 1991, “
Examination of a Vortex-Ring Interaction Phenomenon in an Axisymmetric Flow
,” AIAA Paper No. AIAA-1991–548.
8.
Versteeg
,
H. K.
, and
Malalasekera
,
W. K.
, 1995,
An Introduction to Computational Fluid Dynamics, The Finite Volume Method
,
Pearson Prentice-Hall
,
Essex
.
9.
Sirovich
,
L.
, 1987, “
Turbulence and Dynamics of Coherent Structures, Part I: Coherent Structures
,”
Q. Appl. Math.
0033-569X,
XLV
, pp.
561
571
.
10.
Kunisch
,
K.
, and
Volkwein
,
S.
, 2002, “
Galerkin Proper Orthogonal Decomponsition Methods for a General Equation in Fluid Dynamics
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
40
, pp.
492
515
.
11.
Christensen
,
E. A.
,
Brons
,
M.
, and
Sorensen
,
J. N.
, 1999, “
Evaluation of Proper Orthogonal Decomposition-Based Techniques Applied to Parameter Dependent Nonturbulent Flows
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
(
4
), pp.
1419
1434
.
You do not currently have access to this content.