In times comparable to the characteristic time of the energy carriers, Fourier’s law of heat conduction breaks down and heat may propagate as waves. Based on the concept of thermomass, which is defined as the equivalent mass of phonon gas in dielectrics, according to the Einstein’s mass-energy relation, the phonon gas in the dielectrics is described as a weighty, compressible fluid. Newton mechanics has been applied to establish the equation of state and the equation of motion for the phonon gas as in fluid mechanics, because the drift velocity of a phonon gas is normally much less than the speed of light. The propagation velocity of the thermal wave in the phonon gas is derived directly from the equation of state for the phonon gas, rather than from the relaxation time in the Cattaneo–Vernotte (CV) model (Cattaneo, C., 1948, “Sulla Conduzione Del Calore,” Atti Semin. Mat. Fis. Univ. Modena, 3, pp. 83–101; Vernotte, P., 1958, “Paradoxes in the Continuous Theory of the Heat Equation,” C. R. Acad. Bulg. Sci., 246, pp. 3154–3155). The equation of motion for the phonon gas gives rise to the thermomass model, which depicts the general relation between the temperature gradient and heat flux. The linearized conservation equations for the phonon gas lead to a damped thermal wave equation, which is similar to the CV-wave equation, but with different characteristic time. The lagging time in the resulting thermal wave equation is related to the wave velocity in the phonon gas, which is approximately two orders of magnitude larger than the relaxation time adopted in the CV-wave model for the lattices. A numerical example for fast transient heat conduction in a silicon film is presented to show that the temperature peaks resulting from the thermomass model are much higher than those resulting from the CV-wave model. Due to the slower thermal wave velocity in the phonon gas, by as much as one order of magnitude, the damage due to temperature overshooting may be more severe than that expected from the CV-wave model.

1.
Fourier
,
J.
, 1955,
Analytical Theory of Heat
,
Dover
,
New York
.
2.
Tisza
,
L.
, 1938, “
The Thermal Superconductivity of Helium II and the Statistics of Bose-Einstein
,”
Compt. Rend.
0001-4036,
207
, pp.
1035
1037
.
3.
Landau
,
L.
, 1941, “
Theory of the Superfluidity of Helium II
,”
Phys. Rev.
0096-8250,
60
(
4
), pp.
356
358
.
4.
Peshkov
,
V.
, 1944, “
“Second Sound” in Helium II
,”
J. Phys. (USSR)
0368-3400,
8
, p.
381
.
5.
Stritzker
,
B.
,
Pospieszczyk
,
A.
, and
Tagle
,
J. A.
, 1981, “
Measurement of Lattice Temperature of Silicon During Pulsed Laser Annealing
,”
Phys. Rev. Lett.
0031-9007,
47
(
5
), pp.
356
358
.
6.
Torii
,
S.
, and
Yang
,
W. J.
, 2005, “
“Heat Transfer Mechanisms in Thin Film With Laser Heat Source
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
3–4
), pp.
537
544
.
7.
Guo
,
Z. Y.
, and
Xu
,
Y. S.
, 1995, “
Non-Fourier Heat Conduction in IC Chip
,”
ASME J. Electron. Packag.
1043-7398,
117
(
3
), pp.
174
177
.
8.
Cattaneo
,
C.
, 1948, “
Sulla Conduzione Del Calore
,”
Atti Semin. Mat. Fis. Univ. Modena
0041-8986,
3
, pp.
83
101
.
9.
Vernotte
,
P.
, 1958, “
Paradoxes in the Continuous Theory of the Heat Equation
,”
C. R. Acad. Sci.
,
246
, pp.
3154
3155
.
10.
Morse
,
P. M.
, and
Feshbach
,
H.
, 1953,
Methods of Theoretical Physics
,
McGraw-Hill
,
New York
.
11.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
(
1
), pp.
41
73
.
12.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
, 1987, “
Femtosecond Electronic Heat-Transport Dynamics in Thin Gold-Films
,”
Phys. Rev. Lett.
0031-9007,
59
(
17
), pp.
1962
1965
.
13.
Tzou
,
D. Y.
, 1989, “
On the Thermal Shock Wave Induced by a Moving Heat Source
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
232
238
.
14.
Tzou
,
D.
, 1992, “
Thermal Shock Phenomena Under High-Rate Response in Solids
,”
Annual Review of Heat Transfer
,
Hemisphere
,
Washington, DC
, pp.
111
185
.
15.
Tzou
,
D. Y.
, 1996,
Macro-to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
16.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1990, “
Addendum to the Paper “Heat Waves” [Rev. Mod. Phys. 61, 41 (1989)]
,”
Rev. Mod. Phys.
0034-6861,
62
(
2
), pp.
375
391
.
17.
Özişik
,
M. N.
, and
Tzou
,
D. Y.
, 1994, “
On the Wave Theory in Heat-Conduction
,”
ASME J. Heat Transfer
0022-1481,
116
(
3
), pp.
526
535
.
18.
Haji-Sheikh
,
A.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
, 2002, “
Certain Anomalies in the Analysis of Hyperbolic Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
124
(
2
), pp.
307
319
.
19.
Cheng
,
L.
,
Xu
,
M.
, and
Wang
,
L.
, 2008, “
Single- and Dual-Phase-Lagging Heat Conduction Models in Moving Media
,”
ASME J. Heat Transfer
0022-1481,
130
(
12
), p.
121302
.
20.
Nernst
,
W.
, 1917,
Die Theoretischen Grundlagen Des Neuen Wärmesatzes
,
Knapp
,
Halle
.
21.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
0096-8250,
37
(
4
), pp.
405
426
.
22.
Tolman
,
R. C.
, 1930, “
On the Weight of Heat and Thermal Equilibrium in General Relativity
,”
Phys. Rev.
0096-8250,
35
(
8
), pp.
904
924
.
23.
Eckart
,
C.
, 1940, “
The Thermodynamics of Irreversible Processes III Relativistic Theory of the Simple Fluid
,”
Phys. Rev.
0096-8250,
58
(
10
), pp.
919
924
.
24.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1959,
Fluid Mechanics
,
Pergamon
,
London
.
25.
Cao
,
B. Y.
, and
Guo
,
Z. Y.
, 2007, “
Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction
,”
J. Appl. Phys.
0021-8979,
102
(
5
), p.
053503
.
26.
Feynman
,
R. P.
,
Leighton
,
R. B.
, and
Sands
,
M.
, 1964,
Lectures on Physics
,
Addison-Wesley
,
Reading, MA
.
27.
Guo
,
Z. Y.
,
Cao
,
B. Y.
,
Zhu
,
H. Y.
, and
Zhang
,
Q. G.
, 2007, “
State Equation of Phonon Gas and Conservation Equations for Phonon Gas Motion
,”
Acta Phys. Sin.
1000-3290,
56
, pp.
3306
3311
.
28.
Tien
,
C. L.
, and
Lienhard
,
J. H.
, 1979,
Statistical Thermodynamics
,
Hemisphere
,
Washington, DC
.
29.
Aharoni
,
J.
, 1985,
The Special Theory of Relativity
,
Dover
,
New York
.
30.
Chester
,
M.
, 1963, “
Second Sound in Solids
,”
Phys. Rev.
0096-8250,
131
(
5
), pp.
2013
2015
.
31.
Carcione
,
J. M.
, and
Ouiroga-Goode
,
G.
, 1996, “
Full Frequency-Range Transient Solution for Compressional Waves in a Fluid-Saturated Viscoacoustic Porous Medium
,”
Geophys. Prospect.
0016-8025,
44
(
1
), pp.
99
129
.
You do not currently have access to this content.