A detailed theoretical analysis has been carried out to study efficient microwave assisted heating of thermoplastic (Nylon 66) slabs via polymer-ceramic-polymer composite attached with ceramic plate at one side. The ceramic layer or plate is chosen as Al2O3 or SiC. The detailed spatial distributions of power and temperature are obtained via finite element simulation. It is found that uniform heating with enhanced processing rate may occur with specific thickness of Al2O3 composite, whereas SiC composite leads to enhanced processing rate with higher thermal runaway for thick Nylon samples attached with Al2O3 plate. SiC composite is effective due to enhanced processing rate, whereas Al2O3 is not effective due to reduced processing rate for thin samples attached with Al2O3 plate. For samples attached with SiC plate, thermal runaway is reduced by SiC composite, whereas that is not reduced by Alumina composite. Current study recommends efficient heating methodologies for thermoplastic substances with ceramic composite to achieve a higher processing rate with uniform temperature distribution.

1.
Cola
,
B. A.
,
Amama
,
P. B.
,
Xu
,
X. F.
, and
Fisher
,
T. S.
, 2008, “
Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces
,”
ASME J. Heat Transfer
0022-1481,
130
(
11
), p.
114503
.
2.
Huo
,
Y.
, and
Li
,
B. Q.
, 2005, “
Boundary/Finite Element Modeling of Three-Dimensional Electromagnetic Heating During Microwave Food Processing
,”
ASME J. Heat Transfer
0022-1481,
127
(
10
), pp.
1159
1166
.
3.
Rattanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
Experimental Validation of a Combined Electromagnetic and Thermal Model for a Microwave Heating of Multi-Layered Materials Using a Rectangular Wave Guide
,”
ASME J. Heat Transfer
0022-1481,
124
(
5
), pp.
992
996
.
4.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, 2002, “
Influence of Irradiation Time, Particle Sizes, and Initial Moisture Content During Microwave Drying of Multi-Layered Capillary Porous Materials
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
151
161
.
5.
Wang
,
Z. H.
, and
Shi
,
M. H.
, 1998, “
The Effects of Sublimation-Condensation Region on Heat and Mass Transfer During Microwave Freeze Drying
,”
ASME J. Heat Transfer
0022-1481,
120
(
3
), pp.
654
660
.
6.
Zeng
,
X.
, and
Faghri
,
A.
, 1994, “
Experimental and Numerical Study of Microwave Thawing Heat-Transfer for Food Materials
,”
ASME J. Heat Transfer
0022-1481,
116
(
2
), pp.
446
455
.
7.
Bubnovich
,
V.
,
Villarreal
,
C.
, and
Reyes
,
A.
, 2008, “
Computer Simulation of the Drying of Seeds and Vegetables in a Discontinuous Fluidized Bed
,”
Numer. Heat Transfer, Part A
1040-7782,
54
(
3
), pp.
255
278
.
8.
Zhu
,
J.
,
Kuznetsov
,
A. V.
, and
Sandeep
,
K. P.
, 2007, “
Numerical Modeling of a Moving Particle in a Continuous Flow Subjected to Microwave Heating
,”
Numer. Heat Transfer, Part A
1040-7782,
52
(
5
), pp.
417
439
.
9.
Kelen
,
A.
,
Ress
,
S.
,
Nagy
,
T.
,
Pallai-Varsanyi
,
E.
, and
Pintye-Hodi
,
K.
, 2006, “
“3D Layered Thermography” Method to Map the Temperature Distribution of a Free Flowing Bulk in Case of Microwave Drying
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
5-6
), pp.
1015
1021
.
10.
Rattanadecho
,
P.
, 2004, “
Theoretical and Experimental Investigation of Microwave Thawing of Frozen Layer Using a Microwave Oven (Effects of Layered Configurations and Layer Thickness)
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
5
), pp.
937
945
.
11.
Wu
,
H. X.
,
Li
,
F.
,
Lin
,
Y. H.
,
Cai
,
R. F.
,
Wu
,
H. X.
,
Tong
,
R.
, and
Qian
,
S. X.
, 2006, “
Fullerene-Functionalized Polycarbonate: Synthesis Under Microwave Irradiation and Nonlinear Optical Property
,”
Polym. Eng. Sci.
0032-3888,
46
(
4
), pp.
399
405
.
12.
So
,
H. W.
, and
Taube
,
A.
, 2004, “
Numerical Investigation of the Influence of Material Properties and Adhesive Layer Thickness on the Heating Efficiency of Microwave Curing of an Adhesive-Bonded Joint
,”
Polym. Eng. Sci.
0032-3888,
44
(
8
), pp.
1414
1418
.
13.
So
,
H. W.
, and
Taube
,
A.
, 2004, “
Simulation and Experimental Study of Microwave Heating of Single Lap Adhesive-Bonded Polypropylene Joint
,”
Polym. Eng. Sci.
0032-3888,
44
(
4
), pp.
728
735
.
14.
Wu
,
C. Y.
, and
Benatar
,
A.
, 1997, “
Microwave Welding of High Density Polyethylene Using Intrinsically Conductive Polyaniline
,”
Polym. Eng. Sci.
0032-3888,
37
(
4
), pp.
738
743
.
15.
Lu
,
C. M.
,
Cheng
,
M. M. C.
,
Benatar
,
A.
, and
Lee
,
L. J.
, 2007, “
Embossing of High-Aspect-Ratio-Microstructures Using Sacrificial Templates and Fast Surface Heating
,”
Polym. Eng. Sci.
0032-3888,
47
(
6
), pp.
830
840
.
16.
Riha
,
P.
,
Hadac
,
J.
,
Slobodian
,
P.
,
Saha
,
P.
,
Rychwalski
,
R. W.
, and
Kubat
,
J.
, 2007, “
Effect of Aging Time on the Volumetric and Enthalpic Glass Transition of a-PMMA Upon Heating
,”
Polymer
0032-3861,
48
(
25
), pp.
7356
7363
.
17.
Chen
,
M.
,
Siochi
,
E. J.
,
Ward
,
T. C.
, and
Mcgrath
,
J. E.
, 1993, “
Basic Ideas of Microwave Processing of Polymers
,”
Polym. Eng. Sci.
0032-3888,
33
(
17
), pp.
1092
1109
.
18.
Chen
,
M.
,
Hellgeth
,
J. W.
,
Ward
,
T. C.
, and
Mcgrath
,
J. E.
, 1995, “
Microwave Processing of 2-Phase Systems—Composites and Polymer Blends
,”
Polym. Eng. Sci.
0032-3888,
35
(
2
), pp.
144
150
.
19.
Jullien
,
H.
,
Petit
,
A.
, and
Merienne
,
C.
, 1996, “
The Microwave Reaction of Phenyl Glycidyl Ether With Aniline on Inorganic Supports: A Model for the Microwave Cross-Linking Of Epoxy Resins
,”
Polymer
0032-3861,
37
(
15
), pp.
3319
3330
.
20.
Papargyris
,
D. A.
,
Day
,
R. J.
,
Nesbitt
,
A.
, and
Bakavos
,
D.
, 2008, “
Comparison of the Mechanical and Physical Properties of a Carbon Fibre Epoxy Composite Manufactured by Resin Transfer Moulding Using Conventional and Microwave Heating
,”
Compos. Sci. Technol.
0266-3538,
68
(
7-8
), pp.
1854
1861
.
21.
Sombatsompop
,
N.
, and
Kumnuantip
,
C.
, 2006, “
Comparison of Physical and Mechanical Properties of NR/Carbon Black/Reclaimed Rubber Blends Vulcanized by Conventional Thermal and Microwave Irradiation Methods
,”
J. Appl. Polym. Sci.
0021-8995,
100
(
6
), pp.
5039
5048
.
22.
Kathirgamanathan
,
P.
, 1993, “
Microwave Welding of Thermoplastics Using Inherently Conducting Polymers
,”
Polymer
0032-3861,
34
(
14
), pp.
3105
3106
.
23.
Chabinsky
,
I. J.
, 1983, “
Practical Applications of Microwave-Energy in the Rubber Industry
,”
Elastomerics
,
115
(
1
), pp.
17
20
.
24.
Raj
,
J. M.
,
Ranganathaiah
,
C.
, and
Ganesh
,
S.
, 2008, “
Interfacial Modifications in PS/PMMA and PVC/EVA Blends by E-Beam and Microwave Irradiation: A Free Volume Study
,”
Polym. Eng. Sci.
0032-3888,
48
(
8
), pp.
1495
1503
.
25.
Jullien
,
H.
, and
Valot
,
H.
, 1983, “
Behavior of Film Forming Polymers in a Microwave Electric-Field
,”
Polymer
0032-3861,
24
(
7
), pp.
810
814
.
26.
Moriwaki
,
S.
,
Machida
,
M.
,
Tatsumoto
,
H.
,
Kuga
,
M.
, and
Ogura
,
T.
, 2006, “
A Study on Thermal Runaway of Poly(Vinyl Chloride) by Microwave Irradiation
,”
J. Anal. Appl. Pyrolysis
0165-2370,
76
(
1–2
), pp.
238
242
.
27.
Bur
,
A. J.
, 1985, “
Dielectric-Properties of Polymers at Microwave Frequencies—A Review
,”
Polymer
0032-3861,
26
(
7
), pp.
963
977
.
28.
Riddle
,
B.
,
Baker-Jarvis
,
J.
, and
Krupka
,
J.
, 2003, “
Complex Permittivity Measurements of Common Plastics Over Variable Temperatures
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
51
(
3
), pp.
727
733
.
29.
Harper
,
J.
,
Price
,
D.
, and
Zhang
,
J.
, 2007, “
Use of Fillers to Enable the Microwave Processing of Polyethylene
,”
J. Microwave Power Electromagn. Energy
0832-7823,
40
(
4
), pp.
219
227
.
30.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Crapiste
,
G.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1991, “
Microwave-Heating—An Evaluation of Power Formulations
,”
Chem. Eng. Sci.
0009-2509,
46
(
4
), pp.
1005
1016
.
31.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Barringer
,
S. A.
, and
Davis
,
E. A.
, 1997, “
Resonant Microwave Power Absorption in Slabs and Cylinders
,”
AIChE J.
0001-1541,
43
(
3
), pp.
615
624
.
32.
Barringer
,
S. A.
,
Davis
,
E. A.
,
Gordon
,
J.
, and
Ayappa
,
K. G.
, 1995, “
Microwave-Heating Temperature Profiles for Thin Slabs Compared to Maxwell and Lambert Law Predictions
,”
J. Food Sci.
,
60
(
5
), pp.
1137
1142
.
33.
Basak
,
T.
, and
Ayappa
,
K. G.
, 1997, “
Analysis of Microwave Thawing of Slabs With Effective Heat Capacity Method
,”
AIChE J.
0001-1541,
43
(
7
), pp.
1662
1674
.
34.
Basak
,
T.
, 2004, “
Role of Resonances on Microwave Heating of Oil-Water Emulsions
,”
AIChE J.
0001-1541,
50
(
11
), pp.
2659
2675
.
35.
Basak
,
T.
, and
Priya
,
A. S.
, 2005, “
Role of Ceramic Supports On Microwave Heating of Materials
,”
J. Appl. Phys.
0021-8979,
97
(
8
), p.
083537
.
36.
Basak
,
T.
, and
Priya
,
A. S.
, 2005, “
Role of Metallic and Ceramic Supports on Enhanced Microwave Heating Processes
,”
Chem. Eng. Sci.
0009-2509,
60
(
10
), pp.
2661
2677
.
37.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1991, “
Analysis of Microwave-Heating of Materials With Temperature-Dependent Properties
,”
AIChE J.
0001-1541,
37
(
3
), pp.
313
322
.
38.
Ayappa
,
K. G.
,
Davis
,
H. T.
,
Davis
,
E. A.
, and
Gordon
,
J.
, 1992, “
2-Dimensional Finite-Element Analysis of Microwave-Heating
,”
AIChE J.
0001-1541,
38
(
10
), pp.
1577
1592
.
39.
De Wagter
,
C.
, 1984, “
Computer Simulation Predicting Temperature Distributions Generated by Microwave Absorption in Multilayered Media
,”
J. Microwave Power Electromagn. Energy
0832-7823,
19
(
2
), pp.
97
106
.
40.
Jolly
,
P.
, and
Turner
,
I.
, 1990, “
Non-Linear Field Solutions of One-Dimensional Microwave Heating
,”
J. Microwave Power Electromagn. Energy
0832-7823,
25
(
1
), pp.
3
15
.
41.
Chatterjee
,
A.
,
Basak
,
T.
, and
Ayappa
,
K. G.
, 1998, “
Analysis of Microwave Sintering of Ceramics
,”
AIChE J.
0001-1541,
44
(
10
), pp.
2302
2311
.
You do not currently have access to this content.