In recent years, high-heat-flux cooling techniques have received great attention from researchers around the world due to its importance in thermal management of both commercial and defense high-power electronic devices. Although impressive progress has been made during the last few decades, high-heat-flux removal still largely remains as a challenging subject that needs further exploration and study. In this paper, we have reviewed recent developments in several high-heat-flux heat removal techniques, including microchannels, jet impingements, sprays, wettability effects, and piezoelectrically driven droplets. High-heat-flux removal can be achieved effectively by either single-phase flow or two-phase flow boiling heat transfer. Better understandings of the underlying heat transfer mechanisms for performance improvement are discussed.

References

1.
United States Semiconductor Industry Association (SIA), European Semiconductor Industry Association (ESIA), the Japan Electronics and Information Technology Industries Association (JEITA), the Korean Semiconductor Industry Association (KSIA), and the Taiwan Semiconductor Industry Association (TSIA), and, 2009, “
International Technology Roadmap for Semiconductors
,” http://www.itrs.net/Links/2009ITRS/Home2009.htmhttp://www.itrs.net/Links/2009ITRS/Home2009.htm.
2.
Mudawar
,
I.
, 2001, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
3.
Savino
,
R.
,
Paterna
,
D.
, and
Abe
,
Y.
, 2007, “
Recent Developments in Heat Pipes: An Overview
,”
Recent Pat. Eng.
,
1
(
2
), pp.
153
161
.
4.
Sobhan
,
C. B.
,
Raq
,
R. L.
, and
Peterson
,
G. P.
, 2007, “
A Review and Comparative Study of the Investigations on Micro Heat Pipes
,”
Int. J. Energy Res.
,
31
(
6-7
), pp.
664
688
.
5.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
, 2009, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3187
3196
.
6.
Ghiaasiaan
,
S. M.
, and
Abdel-Khalik
,
S. I.
, 2001, “
Two-Phase Flow in Micro-Channels
,”
Adv. Heat Transfer
,
34
, pp.
145
254
.
7.
Obot
,
N. T.
, 2002, “
Toward a Better Understanding of Friction and Heat/mass Transfer in Micro-Channels - A Literature Review
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
Banff, Canada
, pp.
54
64
.
8.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
9.
Cheng
,
P.
,
Wang
,
G.
, and
Quan
,
X.
, 2009, “
Recent Work on Boiling and Condensation in Microchannels
,”
J. Heat Transfer
,
131
, p.
043211
.
10.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
A Review of the Critical Heat Flux Condition in Mini- and Microchannels
,”
J. Mech. Sci. Technol.
,
23
, pp.
2529
,
2547
.
11.
Kandlikar
,
S. G.
, 2010, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
Proceedings of the 14th International Heat Transfer Conference
,
Washington, DC
, Paper No. IHTC14-23353.
12.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
, pp.
187
227
.
13.
Downs
,
S. J.
, and
James
,
E. H.
, 1987, “
Jet Impingement Heat Transfer: A Literature Survey
,” ASME Paper No. 87-HT-35.
14.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
15.
Gu
,
C. B.
,
Su
,
G. S.
,
Chow
,
L. C.
, and
Pais
,
M. R.
, 1993, “
Comparison of Spray and Jet Impingement Cooling
,” ASME Paper No. 93–HT–20.
16.
Kim
,
J.
, 2007, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
, pp.
753
767
.
17.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
, and
Thome
,
J. R.
, 2007, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
18.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
, 2006, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
.
19.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
, 2007, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.
20.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
EDL-2
, pp.
126
129
.
21.
Pais
,
M. R.
,
Chow
,
L. C.
, and
Mahefkey
,
E. T.
, 1992, “
Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling
,”
J. Heat Transfer
,
114
, pp.
211
219
.
22.
Silverman
,
I.
,
Yarin
,
A. L.
,
Reznik
,
S. N.
,
Arenshtam
,
A.
,
Kijet
,
D.
, and
Nagler
,
A.
, 2006, “
High Heat-Flux Accelerator Targets: Cooling With Liquid Metal Jet Impingement
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2782
2792
.
23.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
, 2000, “
Fluid Flow and Heat Transfer at Micro and Meso Scales with Application to Heat Exchanger Design
,”
Appl. Mech. Rev.
,
53
(
7
), pp.
175
193
.
24.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2002, “
Evolution of Microchannel Flow Passages – Thermohydraulic Performance and Fabrication Technology
,” ASME Paper No. IMECE2002-32043.
25.
Kew
,
P.
, and
Cornwell
,
K.
, 1997, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Therm. Eng.
,
17
, pp.
705
715
.
26.
Cheng
,
P.
, and
Wu
,
H. Y.
, 2006, “
Mesoscale and Microscale Phase-Change Heat Transfer
,”
Adv. Heat Transfer
,
39
, pp.
461
563
.
27.
Kandlikar
,
S. G.
, 2010, “
Microchannels: Rapid Growth of a Nascent Technology
,”
J. Heat Transfer
,
132
, p.
040301
.
28.
Kosar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
J. Heat Transfer
,
128
(
2
), pp.
121
131
.
29.
Wei
,
X.
, and
Joshi
,
Y.
, 2002, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
Proc. ITherm 2002
,
San Diego, CA
, pp.
441
448
.
30.
Koo
,
J.
,
Jiang
,
L.
,
Bari
,
A.
,
Zhang
,
L.
,
Wang
,
E.
,
Kenny
,
T. W.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
, 2002, “
Convective Boiling in Microchannel Heat Sinks With Spatially-Varying Heat Generation
,”
Proc. ITherm 2002
,
San Diego, CA
, pp.
341
346
.
31.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
, and
Oppermann
,
H.
, 2008, “
Forced Convective Interlayer Cooling in Vertically Integrated Packages
,”
Proc. ITherm 2008
,
Orlando, FL
, pp.
1114
1125
.
32.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y.-J.
, and
Lim
,
S.-K.
, 2010, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
,”
J. Heat Transfer
,
132
, p.
041009
.
33.
Husain
,
A.
, and
Kim
,
K.-Y.
, 2009, “
Thermal Optimization of a Microchannel Heat Sink With Trapezoidal Cross Section
,”
J. Electron. Packag.
,
131
, p.
021005
.
34.
Li
,
J.
, and
Peterson
,
G. P.
, 2007, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2895
2904
.
35.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
J. Heat Transfer
,
133
, p.
051702
.
36.
Hirshfeld
,
H.
,
Silverman
,
I.
,
Arenshtam
,
A.
,
Kijel
,
D.
, and
Nagler
,
A.
, 2006, “
High Heat Flux Cooling of Accelerator Targets With Micro-Channels
,”
Nucl. Instrum. Methods Phys. Res. A
,
562
(
2
), pp.
903
905
.
37.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
LaBianca
,
N.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama, Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
, and
Schmidt
,
R.
, 2005, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
21st IEEE SEMI-THERM Symp.
, pp.
1
7
.
38.
Walchli
,
R.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
, 2010, “
Self-Contained, Oscillating Flow Liquid Cooling System for Thin Form Factor High Performance Electronics
,”
J. Heat Transfer
,
132
, p.
051401
.
39.
Fang
,
R.
,
Jiang
,
W.
,
Khan
,
J.
, and
Dougal
,
R.
, 2009, “
Experimental Heat Transfer Enhancement for Single Phases Liquid Micro-Channel Cooling Using a Micro-Synthetic Jet Actuator
,”
Proceedings of ASME 2009 2nd Micro/Nanoscale HeatMass Transfer International Conference
,
Shanghai, China
, pp.
199
206
.
40.
Bogojevic
,
D.
,
Sefiance
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
, 2011, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
, pp.
309
324
.
41.
Kosar
,
A.
, and
Peles
,
Y.
, 2007, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
J. Heat Transfer
,
29
, pp.
844
851
.
42.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Critical Heat Flux for Subcooled Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3341
3352
.
43.
Krishnamurthy
,
S.
, and
Peles
,
Y.
, 2010, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
J. Heat Transfer
,
132
, p.
041007
.
44.
Wang
,
H.
, and
Peterson
,
R. B.
, 2010, “
Enhanced Boiling Heat Transfer in Parallel Microchannels With Diffusion Brazed Wire Mesh
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
4
), pp.
784
793
.
45.
Asthana
,
A.
,
Zinovik
,
I.
,
Weinmueller
,
C.
, and
Poulikakos
,
D.
, 2011, “
Significant Nusselt Number Increase in Microchannels With a Segmented Flow of Two Immiscible Liquids: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1456
1464
.
46.
Beltz
,
A. R.
,
Jenkins
,
J. R.
,
Kim
,
C. J.
, and
Attinger
,
D.
, 2011, “
Significant Boiling Enhancement With Surfaces Combining Superhydrophilic and Superhydrophobic Patters
,”
Proceedings of 2011 IEEE 24th International Conference, MEMS
,
Mexico
, pp.
1191
1196
.
47.
Zhang
,
W.
,
Liu
,
G.
,
Xu
,
J.
, and
Yang
,
Y.
, 2009, “
Effect of Channel Surface Wettability and Temperature Gradients on the Boiling Flow Pattern in a Single Microchannel
,”
J. Micromech. Microeng.
,
19
, p.
055012
.
48.
Liu
,
T. Y.
,
Li
,
P. L.
,
Liu
,
C. W.
, and
Gau
,
C.
, 2011, “
Boiling Flow Characteristics in Microchannels With Very Hydrophobic Surface to Super-Hydrophilic Surface
,”
Int. J. Heat Mass Transfer
,
54
, pp.
126
134
.
49.
Hsieh
,
S.-S.
, and
Lin
,
C.-Y.
, 2009, “
Convective Heat Transfer in Liquid Microchannels With Hydrophobic and Hydrophilic Surfaces
,”
Int. J. Heat Mass Transfer
,
52
, pp.
260
270
.
50.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
, 2011, “
Flow Boiling of Water on Titanium and Diamond-Like Carbon Coated Surfaces in a Microchannel
,”
Fron. Heat Mass Transfer
,
2
, pp.
1
6
.
51.
Rosenggarten
,
G.
,
Cooper-White
,
J.
, and
Metcalfe
,
G.
, 2006, “
Experimental and Analytical Study of the Effect of Contact Angle on Liquid Convective Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4161
4170
.
52.
Choi
,
C.
,
Shin
,
J. S.
,
Kim
,
D. I. Y.
, and
Kim
,
M. H.
, 2010, “
Flow Boiling Behaviors in Hydrophilic and Hydrophobic Microchannels
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
816
824
.
53.
Liu
,
Z.
, and
Qiu
,
Y.
, 2006, “
Critical Heat Flux of Steady Boiling for Water Jet Impingement in Flat Stagnation Zone on Superhydrophilic Surface
,”
J. Heat Transfer
,
128
(
7
), pp.
726
729
.
54.
Baird
,
E.
, and
Mohseni
,
K.
, 2008, “
Digitized Heat Trasnfer: A New Paradigm for Thermal Management of Compact Micro Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
143
151
.
55.
Paik
,
P.
,
Chakrabarty
,
K.
, and
Pamula
,
V. K.
, 2008, “
A Digital-Microfluidics Approach to Chip Cooling
,”
IEEE Des. Test Comput.
,
25
(
4
), pp.
372
381
.
56.
Oprins
,
H.
,
Danneels
,
J.
,
Ham
,
B. V.
,
Vandevelde
,
B.
, and
Baelmans
,
M.
, 2008, “
Convection Heat Transfer in Electrostatic Actuated Liquid Droplets for Electronics Cooling
,”
Microelectron. J.
,
39
, pp.
966
974
.
57.
Cheng
,
J.-T.
, and
Chen
,
C. -L
, 2010, “
Adaptive Chip Cooling Using Electrowetting on Coplanar Control Electrodes
,”
Nanoscale Microscale Thermophys. Eng.
,
14
, pp.
63
74
.
58.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
, 2003, “
Comparative Study of Spray and Multiple Micro Jets Cooling for High Power Density Electronic Applications
,” ASME Paper No. IMECE2003-42325.
59.
Michna
,
G. J.
,
Browne
,
E. A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2009, “
Single-Phase Microscale Jet Stagnation Point Heat Transfer
,”
J. Heat Transfer
,
131
, p.
111402
.
60.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1993, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
J. Heat Transfer
,
115
(
1
), pp.
106
116
.
61.
Garimella
,
S. V.
, and
Rice
,
R. A.
, 1995, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
J. Heat Transfer
,
117
(
4
), pp.
871
877
.
62.
Natarajan
,
G.
, and
Bezama
,
R. J.
, 2006, “
Ceramic Microjet Cooling Device
,”
Proceedings of ASME ICNMM06, Parts A and B
,
Limerick, Ireland
, pp.
263
270
.
63.
Koncar
,
B.
,
Norajitra
,
P.
, and
Oblak
,
K.
, 2010, “
Effect of Nozzle Sizes on Jet Impingement Heat Transfer in He-Cooled Divertor
,”
Appl. Therm. Eng.
,
30
, pp.
697
705
.
64.
Browne
,
E. A.
,
Michna
,
G. J.
,
Jensen
,
M. K.
, and
Peles
,
Y.
, 2010, “
Experimental Investigation of Single-Phase Microjet Array Heat Transfer
,”
J. Heat Transfer
,
132
, p.
041013
.
65.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2008, “
Single-Phase and Two-Phase Hybrid Cooling Schemes for High-Heat-Flux Thermal Management of Defense Electronics
,”
Proceedings of ITherm 2008
,
Orlando, FL
, pp.
121
131
.
66.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
, 2006, “
An Experimental Investigation of Liquid Jet Impingement and Single-Phase Spray Cooling Using Polyalphaolefin
,”
Exp. Heat Transfer
,
19
(
2
), pp.
149
163
.
67.
Martinez-Galvan
,
E.
,
Ramos
,
J. C.
,
Anton
,
R.
, and
Khodabandeh
,
R.
, 2011, “
Film Thickness and Heat Transfer Measurement in a Spray Cooling System With R134a
,”
J. Heat Transfer
,
133
, p.
011002
.
68.
Yan
,
Z. B.
,
Toh
,
K. C.
,
Duan
,
F.
,
Wong
,
T. N.
,
Choo
,
K. F.
,
Chan
,
P. K.
, and
Chua
,
Y. S.
, 2010, “
Experimental Study of Impingement Spray Cooling for High Power Devices
,”
Appl. Therm. Eng.
,
30
, pp.
1225
1230
.
69.
Duursma
,
G.
,
Sefiane
,
K.
, and
Kennedy
,
A.
, 2009, “
Experimental Studies of Nanofluid Droplets in Spray Cooling
,”
Heat Transfer Eng.
,
30
(
13
), pp.
1108
1120
.
70.
Silk
,
E. A.
,
Kim
,
J.
, and
Kiger
,
K.
, 2006, “
Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4910
4920
.
71.
Coursey
,
J. S.
,
Kim
,
J.
, and
Kiger
,
K. T.
, 2007, “
Spray Cooling of High Aspect Ratio Open Microchannels
,”
J. Heat Transfer
,
129
, pp.
1052
1059
.
72.
Bostanci
,
H.
,
Ee
,
D. V.
,
Saarloos
,
B. A.
,
Rini
,
D. P.
, and
Chow
,
L. C.
, 2009, “
Spray Cooling of Power Electronics Using High Temperature Coolant and Enhanced Surface
,”
Proceedings of Vehicle Power and Propulsion Conference
,
IEEE
, pp.
609
613
.
73.
Srikar
,
R.
,
Gambaryan-Roisman
,
T.
,
Steffes
,
C.
,
Stephan
,
P.
,
Tropea
,
C.
, and
Yarin
,
A. L.
, 2009, “
Nanofiber Coating of Surfaces for Intensification of Drop or Spray Impact Cooling
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5814
5826
.
74.
Estes
,
K. A.
, and
Mudawar
,
I.
, 1995, “
Correlating of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surface
,”
Int. J. Heat Mass Transfer
,
38
, pp.
2985
2996
.
75.
Visaria
,
M.
, and
Mudawar
,
I.
, 2008, “
Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5269
5278
.
76.
Visaria
,
M.
, and
Mudawar
,
I.
, 2009, “
Application of Two-Phase Spray Cooling for Thermal Management of Electronic Devices
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
784
793
.
77.
Elston
,
L. J.
,
Yerkes
,
K. L.
,
Thomas
,
S. K.
, and
McQuillen
,
J.
2009, “
Cooling Performance of a 16-Nozzle Array in Variable Gravity
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
571
581
.
78.
Choi
,
K. J.
, and
Yao
,
S. C.
, 1987, “
Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
311
318
.
79.
Huang
,
Y.-L.
,
Chang
,
S.-H.
,
Wang
,
C.-H.
, and
Lee
,
C. -I
, 2005, “
Piezoelectric Actuating Sprayed Phase-Change Cooling Technique for VLSI Chips
,”
Proceedings of 2005 ASME Summer Heat Transfer Conference
,
San Francisco, CA
, pp.
503
509
.
80.
Xia
,
C.
, 2002, “
Spray/jet Cooling for Heat Flux High to 1kW/cm2
,”
18th Annual IEEE Symposium on Semiconductor Thermal Measurement and Management
, pp.
1157
1175
81.
Heffington
,
S. N.
, and
Glezer
,
A.
, 2004, “
Two-Phase Thermal Management Using a Small-Scale, Heat Transfer Cell Based on Vibration-Induced Droplet Atomizatio
,”
Proceedings of ITherm 2004
,
Las Vegas, NV
, pp.
90
94
.
82.
Heffington
,
S. N.
,
Black
,
W. Z.
, and
Glezer
,
A.
, 2002, “
Vibration-Induced Droplet Atomization Heat Transfer Cell for High-Heat Flux Dissipation
,”
Proceedings of THERMES-2002
,
Santa Fe, NM
.
83.
Mudawar
,
M.
, and
Bowers
,
M. B.
, 1999, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling-I: CHF Data and Parametric Effects for Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
31
, pp.
1405
1428
.
84.
Liu
,
X.
, and
Lienhard
,
J. H.
, 1992, “
Extremely High Heat Flux Removal by Subcooled Liquid Jet Impingement
,”
Fundamentals of Subcooled Flow Boiling, ASME, HTD
,
217
, pp.
11
20
.
85.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels With Low Aspect Ratios
,”
Int. J. Multiphase Flow
,
27
, pp.
2043
2062
.
86.
Yan
,
Y.-Y.
, and
Lin
,
T.-F.
, 1998, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe
,”
Int. J. Heat Mass Transfer
,
41
, pp.
4183
4194
.
87.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
, 2002, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
53
64
.
88.
Lin
,
S.
,
Kew
,
P. A.
, and
Cornwell
,
K.
, 2001, “
Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube
,”
Int. J. Refrig.
,
24
, pp.
51
56
.
89.
Wambsganss
,
M. W.
,
France
,
D. M.
, and
Jendrzejczyk
,
T. N.
, 1993, “
Boiling Heat-Transfer in a Horizontal Small-Diameter Tube
,”
J. Heat Transfer
,
115
(
4
), pp.
963
972
.
90.
Tran
,
T. N.
,
Wambsganss
,
D. M.
, and
France
,
D. M.
, 1996, “
Small-Circular- and Rectangular-Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
,
22
, pp.
485
498
.
91.
Huo
,
X.
,
Chen
,
L.
,
Tian
,
Y. S.
, and
Karayiannis
,
T. G.
, 2004, “
Flow Boiling and Flow Regimes in Small Diameter Tubes
,”
Appl. Therm. Eng.
,
24
, pp.
1225
1239
.
92.
Wen
,
D. S.
,
Yan
,
Y.
, and
Kenning
,
D. B. R.
, 2004, “
Saturated Flow Boiling of Water in a Narrow Channel: Time-Averaged Heat Transfer Coefficient and Correlations
,”
Appl. Therm. Eng.
,
24
, pp.
1207
1223
.
93.
Bao
,
Z. Y.
,
Flectcher
,
D. F.
, and
Haynes
,
B. S.
, 2000, “
Flow Boiling Heat Transfer of Freon R11 and HCFC123 in Narrow Passages
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3347
3358
.
94.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
,
28
, pp.
927
941
.
95.
Lazarek
,
G. M.
, and
Black
,
S. H.
, 1982, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
,
25
, pp.
945
959
.
96.
Alvarado
,
J. L.
, and
Lin
,
Y.-P.
, 2010, “
Nanostructured Surfaces for Enhanced Spray Cooling
,”
27th Army Science Conference
, Paper No. MP-10.
97.
Hsieh
,
C.-C.
, and
Yao
,
S.-C.
, 2006, “
Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
49
, pp.
962
974
.
98.
Ravigururajan
,
T. S.
, 1998, “
Impact of Channel Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers
,”
J. Heat Transfer
,
120
, pp.
485
491
.
99.
Chien
,
L.-H.
, and
Chang
,
C.-Y.
, 2011, “
An Experimental Study of Two-Phase Multiple Jet Cooling on Finned Surfaces Using a Dielectric Fluid
,”
Appl. Therm. Eng.
,
31
, pp.
1983
1993
.
100.
Amon
,
C. H.
,
Murthy
,
J. Y.
,
Yao
,
S. C.
,
Narumanchi
,
S.
,
Wu
,
C. F.
, and
Hsieh
,
C. C.
, 2001, “
MEMS Enabled Thermal Management of High-Heat-Flux Devices, Edifice: Embedded Droplet Impingement for Integrated Cooling of Electronics
,”
Exp. Therm. Fluid Sci.
,
25
(
5
), pp.
231
242
.
101.
Copeland
,
D.
, 1998, “
Single-Phase and Boiling Cooling of a Small Heat Source by Multiple Nozzle Jet Impingement
,”
Int. J. Microelectron. Packag.
,
1
, pp.
105
113
.
102.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.
103.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
, 1992, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux From an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
J. Heat Transfer
,
114
, pp.
764
768
.
You do not currently have access to this content.