Thermal rectification is a phenomenon in which transport is preferred in one direction over the opposite. Although observations of thermal rectification have been elusive, it could be useful in many applications such as thermal management of electronics and improvement of thermoelectric devices. The current work explores the possibility of thermally rectifying devices with the use of nanostructured interfaces. Interfaces can theoretically result in thermally rectifying behavior because of the difference in phonon frequency content between two dissimilar materials. The current work shows an effective rectification of greater than 25% in a device composed of two different materials divided equally by a single planar interface.
References
1.
Starr
, C.
, 1935, “The Copper Oxide Rectifier
,” J. Appl. Phys.
, 7
, pp. 15
–19
.2.
Walker
, D. G.
, 2006, “Thermal Rectification Mechanisms Including Noncontinuum Effects
,” Proceedings of the Joint ASME-ISHMT Heat Transfer Conference
.3.
Terraneo
, M.
, Peyrard
, M.
, and Casati
, G.
, 2002, “Controlling the Eenergy Flow in Non-Linear Lattices: A Model for a Thermal Rectifier
,” Phys. Rev. Lett.
, 88
(9
), p. 094302
.4.
Li
, B.
, Wang
, L.
, and Casati
, G.
, 2004, “Thermal Diode: Rectification of Heat Flux
,” Phys. Rev. Lett.
, 93
(18
), p. 184301
.5.
Chang
, C. W.
, Okawa
, D.
, Majumdar
, A.
, and Zettl
, A.
, 2006, “Solid-State Thermal Rectifier
,” Science
, 314
, pp. 1121
–1124
. 6.
Miller
, J.
, Jang
, W.
, and Dames
, C.
, 2009, “Thermal Rectification by Ballistic Phonons in Asymmetric Nanostructures
,” Proceedings of the ASME 2009 Heat Transfer Summer Conference
.7.
Roberts
, N.
, and Walker
, D.
, 2011, “A Review of Thermal Rectification Observations and Mechanisms in Solid Materials
,” Int. J. Therm. Sci.
, 50
(5
), pp. 648
–662
.8.
Wang
, S.-C.
, and Liang
, X.-G.
, 2011, “Investigation of Thermal Rectification in Bi-Layer Nanofilm by Molecular Dynamics
,” Int. J. Therm. Sci.
, 50
(5
), pp. 680
–685
.9.
Rifkin
, J.
, “XMD—Molecular Dynamics Program
,” http://xmd.sourceforge.net/doc/manual/xmd.htmlhttp://xmd.sourceforge.net/doc/manual/xmd.html.10.
Plimpton
, S.
, “LAMMPS—Large-Scale Atomic/Molecular Massivley Parellel Simulator
,” http://lammps.sandia.gov/http://lammps.sandia.gov/.11.
Lukes
, J. R.
, Li
, D.
, Liang, X.-G., and Tien, C.-L., 2000, “Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity
,” ASME J. Heat Transfer
, 122
(3
), pp. 536
–543
.12.
Haenssler
, F.
, Gamper
, K.
, and Serin
, B.
, 1970, “Constant-Volume Specific Heat of Solid Argon
,” J. Low Temp. Phys.
, 3
, pp. 23
–28
. 13.
Keeler
, G. J.
, and Batchelder
, D. N.
, 1970, “Measurement of the Elastic Constants of Argon From 3 to 77 Degrees K
,” J. Phys. C
, 3
(3
), pp. 510
–522
. 14.
Touloukian
, Y.
, Liley
, P.
, and Saxena
, S.
, 1970, Thermal Conductivity: Nonmetallic Liquids and Gases,
IFI/Plenum
, New York
.15.
Christen
, D. K.
, and Pollack
, G. L.
, 1975, “Thermal Conductivity of Solid Argon
,” Phys. Rev. B
, 12
(8
), pp. 3380
–3391
.16.
Ju
, S.
, and Liang
, X.
, 2010, “Investigation of Argon Nanocrystalline Thermal Conductivity by Molecular Dynamics Simulation
,” J. Appl. Phys.
, 108
, p. 104307
.17.
Choi
, S.-H.
, Maruyama
, S.
, Kim, K.-K., and Lee, J.-H., 2003, “Evaluation of the Phonon Mean Free Path in Thin Films by Using Classical Molecular Dynamics
,” J. Korean Phys. Soc.
, 43
(5
), pp. 747
–753
. 18.
Mingo
, N.
, and Broido
, D. A.
, 2005, “Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves
,” Nano Lett.
, 5
(7
), pp. 1221
–1225
. 19.
Schelling
, P. K.
, Phillpot
, S. R.
, and Keblinski
, P.
, 2002, “Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,” Phys. Rev. B
, 65
(14
), p. 144306
. 20.
Roberts
, N.
, Li
, D.
, and Walker
, D.
, 2009, “Molecular Dynamics Simulation of Thermal Conductivity of Nanocrystalline Composite Films
,” Int. J. Heat Mass Transfer
, 52
(7–8
), pp. 2002
–2008
. 21.
McGaughey
, A. J. H.
, and Kaviany
, M.
, 2006, “Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction
,” Adv. Heat Transfer
, 39
, pp. 169
–255
. 22.
Dames
, C.
, 2009, “Solid-State Thermal Rectification With Existing Bulk Materials
,” ASME J. Heat Transfer
, 131
(6
), p. 061301
.23.
Go
, D. B.
, and Sen
, M.
, 2010, “On the Condition for Thermal Rectification Using Bulk Materials
,” ASME J. Heat Transfer
, 132
, p.
124502
.24.
Clayton
, F.
, and Batchelder
, D. N.
, 1973, “Temperature and Volume Dependence of the Thermal Conductivity of Solid Argon
,” J. Phys. C
, 6
(7
), pp. 1213
–1228
. 25.
Dudkin
, V. V.
, Gorodilov
, B. Y.
, Krivchikov
, A. I.
, and Manzhelii
, V. G.
, 2000, “Thermal Conductivity of Solid Krypton With Methane Admixture
,” Low Temp. Phys.
, 26
(9–10
), pp. 762
–766
. 26.
Roberts
, N.
, and Walker
, D.
, 2010, “Phonon Wave-Packet Simulations of Ar/Kr Interfaces for Thermal Rectification
,” J. Appl. Phys.
, 108
(12
), p.
123515
.27.
Swartz
, E. T.
, and Pohl
, R. O.
, 1989, “Thermal Boundary Resistance
,” Rev. Mod. Phys.
, 61
, pp. 605
–668
. 28.
Hopkins
, P.
, and Norris
, P.
, 2009, “Relative Contributions of Inelastic and Elastic Diffuse Phonon Scattering to Thermal Boundary Conductance Across Solid Interfaces
,” ASME J. Heat Transfer
, 131
, p. 022402
.29.
Stevens
, R.
, Zhigilei
, L.
, and Norris
, P.
, 2007, “Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,” Int. J. Heat Mass Transfer
, 50
, pp. 3977
–3989
. 30.
Dobbs
, E.
, Figgins
, B.
, and Jones
, G.
, 1958, “Properties of Solid Argon
,” Il Nuovo Cimento
, 9
, pp. 32
–35
.31.
Chen
, Y. F.
, Li
, D. Y.
, Yang
, J. K.
, Yu
, Y. H.
, Lukes
, J. R.
, and Majumdar
, A.
, 2004, “Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires
,” Physica B
, 349
(1–4
), pp. 270
–280
. Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.