The onset of thermogravitational convection in a horizontal ferrofluid layer is investigated with viscosity depending exponentially on temperature. The bounding surfaces of the ferrofluid layer are considered to be either stress free or rigid-ferromagnetic and insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique and also by a regular perturbation technique for different types of velocity boundary conditions, namely free-free, rigid-rigid, and lower rigid- upper free. It is observed that increasing the viscosity parameter, Λ, and the magnetic number, M1, is to hasten the onset of ferroconvection, while the nonlinearity of fluid magnetization, M3, is found to have no influence on the stability of the system. The critical stability parameters are found to be the same in the limiting cases of either no magnetic forces or no buoyancy forces.

References

1.
Rosensweig
,
R.E.
, 1985,
Ferrohydrodynamics
,
Cambridge University
,
London
.
2.
Bashtovoy
,
V. G.
,
Berkovsky
,
B. N.
, and
Vislovich
,
A. N.
, 1988,
Introduction to Thermo Mechanics of Magnetic Fluids
,
Hemisphere
,
Washington, DC.
3.
Berkovsky
,
B. M.
,
Medvedev
,
V. F.
, and
Krakov
,
M. S.
, 1993,
Magnetic Fluids, Engineering Applications
,
Oxford University
,
Oxford
.
4.
Blums
,
E.
,
Cebers
,
A.
, and
Maiorov
,
M. M.
, 1997,
Magnetic Fluids
,
deGruyter
,
New York
.
5.
Finlayson
,
B.A.
, 1970, “
Convective Instability of Ferromagnetic Fluids
,”
J. Fluid Mech.
,
40
, pp.
753
767
.
6.
Kaloni
,
P. N.
, and
Lou
,
J. X.
, 2004, “
Convective Instability of Magnetic Fluids
,”
Phys. Rev. E
,
70
, pp.
026313
.
7.
Sunil
, and
Mahjan
,
A.
, 2008, “
Nonlinear Stability Analysis for Magnetized Ferrofluid Heated From Below
,”
Proc. R. Soc. London
,
464
, pp.
83
98
.
8.
Nanjundappa
,
C. E.
, and
Shivakumara
,
I. S.
, 2008, “
Effect of Velocity and Temperature Boundary Conditions on Convective Instability in a Ferrofluid Layer
,”
ASME J. Heat Transfer
,
130
, pp.
104502
.
9.
Odenbach
,
S.
, 2004, “
Recent Progress in Magnetic Fluid Research
,”
J. Phys. Condens. Matter
,
16
, pp.
R1135
R1150
.
10.
Stiles
,
P. J.
, and
Kagan
,
M. J.
, 1990, “
Thermoconvective Instability of a Ferrofluid in a Strong Magnetic Field
,”
J. Colloid Interface Sci.
,
134
, pp.
435
449
.
11.
Vaidyanathan
,
G.
,
Sekar
,
R.
, and
Ramanathan
,
A.
, 2002, “
Effect of Magnetic Field Dependent Viscosity on Ferroconvection in Rotating Porous Medium
,”
Indian J. Pure Appl. Phys.
,
40
, pp.
159
165
.
12.
Sunil
,
Sharma
,
A.
, and
Shandil
,
R. G.
, 2008, “
Effect of Magnetic Field Dependent Viscosity on Ferroconvection in the Presence of Dust Particles
,”
J. Appl. Math Comput.
,
27
, pp.
7
22
.
13.
Nanjundappa
,
C. E.
,
Shivakumara
,
I. S.
, and
Srikumar
,
K.
, 2009, “
Effect of MFD Viscosity on the Onset of Ferromagnetic Fluids Layer Heated From Below and Cooled From Above With Constant Heat Flux
,”
Meas. Sci. Rev.
,
9
(
3
), pp.
77
78
.
14.
Nanjundappa
,
C. E.
,
Shivakumara
,
I. S.
, and
Arunkumar
,
R.
, 2010, “
Benard-Marangoni Ferroconvection With Magnetic Field Dependent Viscosity
,”
J. Magn. Magn. Mater.
,
322
, pp.
2256
2263
.
15.
Stengel
,
K. C.
,
Oliver
,
D. S.
, and
Booker
,
J. R.
, 1982, “
Onset of Convection in a Variable-Viscosity Fluid
,”
J. Fluid Mech.
,
120
,
411
431
.
16.
Griffiths
,
R. W.
, 1986, “
Thermals in Extremely Viscous Fluids, Including the Effects of Temperature-Dependent Viscosity
,”
J. Fluid Mech.
,
166
, pp.
115
138
.
17.
Capone
,
F.
, and
Gentile
,
M.
, 1994, “
Nonlinear Stability Analysis of Convection for Fluids With Exponentially Temperature-Dependent Viscosity
,”
Acta Mech.
,
107
, pp.
53
64
.
18.
Char
,
M. I.
, and
Chen
,
C. C.
, 1999, “
Influence of Viscosity Variation on the Stationary Benard-Marangoni Instability With a Boundary Slab of Finite Conductivity
,”
Acta Mech.
,
135
, pp.
181
198
.
19.
Popplewell
,
J.
,
Al-Qenaie
,
A.
,
Charles
,
W.
,
Moskowitz
,
R.
, and
Raj
,
K.
, 1982, “
Thermal Conductivity Measurements on Ferrofluids
,”
Colloid Polym. Sci.
,
260
, pp.
333
338
.
20.
Finlayson
,
B. A.
, 1972,
Method of Weighted Residuals and Variational Principles
,
Academic
,
New York
.
You do not currently have access to this content.