We performed a study for the effect of Newtonian heating on the nonsimilar mixed convection Falkner–Skan flow of a Maxwell fluid. Transformation procedure is adopted in obtaining the ordinary differential equations. Homotopic approach is adopted for the series solutions of velocity and temperature. Special emphasis is given to the effects of Prandtl number (Pr) and conjugate parameter (γ) which measure the strength of surface heating. It is observed that temperature and heat transfer rate are enhanced by increasing the conjugate parameter.

References

1.
Fetecau
,
C.
,
Mahmood
,
M.
, and
Jamil
,
M.
,
2010
, “
Exact Solutions for the Flow of a Viscoelastic Fluid Induced by a Circular Cylinder Subject to a Time Dependent Shear Stress
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
,
pp.
3931
3938
.10.1016/j.cnsns.2010.01.012
2.
Hayat
,
T.
,
Qasim
,
M.
, and
Abbas
,
Z.
,
2010
, “
Radiation and Mass Transfer Effects on the Magnetohydrodynamic Unsteady Flow Induced by a Stretching Sheet
,”
Z. Naturforsch.
,
65
,
pp.
231
239
.
3.
Hayat
,
T.
,
Mustafa
,
M.
, and
Mesloub
,
S.
,
2010
, “
Mixed Convection Boundary Layer Flow Over a Stretching Surface Filled With a Maxwell Fluid in Presence of Soret and Dufour Effects
,”
Z. Naturforsch.
,
65a
,
pp.
401
410
.
4.
Cortell
,
R.
,
2011
, “
Suction, Viscous Dissipation and Thermal Radiation Effects on the Flow and Heat Transfer of a Power-Law Fluid Past an Infinite Porous Plate
,”
Chem. Eng. Res. Des.
,
89
,
pp.
85
93
.10.1016/j.cherd.2010.04.017
5.
Zheng
,
L.
,
Zhao
,
F.
, and
Zhang
,
X.
,
2010
, “
Exact Solutions for Generalized Maxwell Fluid Flow Due to Oscillatory and Constantly Accelerating Plate
,”
Nonlinear Anal.: Real World Appl.
,
11
,
pp.
3744
3751
.10.1016/j.nonrwa.2010.02.004
6.
Wang
,
S.
, and
Tan
,
W. C.
,
2008
, “
Stability Analysis of Double-Diffusive Convection of Maxwell Fluid in a Porous Medium Heated From Below
,”
Phys. Lett. A.
,
372
,
pp.
3046
3050
.10.1016/j.physleta.2008.01.024
7.
Abbasbandy.
S.
, and
Hayat
,
T.
,
2009
, “
Solution of the MHD Falkner-Skan Flow by Hankel-Pade Method
,”
Phys. Lett. A.
,
373
,
pp.
731
734
.10.1016/j.physleta.2008.12.045
8.
Fang
,
T.
, and
Zhang
,
J.
,
2008
, “
An Exact Analytic Solution of the Falkner-Skan Equation With Mass Transfer and Wall Stretching
,”
Int. J. Non-Linear Mech.
,
43
,
pp.
1000
1006
.10.1016/j.ijnonlinmec.2008.05.006
9.
Yao
,
B.
,
2009
, “
Approximate Analytic Solution of the Falkner-Skan Wedge Flow With Permeable of Uniform Suction
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
,
pp.
3320
3326
.10.1016/j.cnsns.2009.01.014
10.
Hayat
,
T.
,
Hussain
,
M.
,
Nadeem
,
S.
, and
Mesloub
,
S.
,
2011
, “
Falkner–Skan Wedge Flow of a Power-Law Fluid With Mixed Convection and Porous Medium
,”
Comput. Fluids
,
49
(
1
),
pp.
22
28
.10.1016/j.compfluid.2011.01.020
11.
Srinivas
,
S.
, and
Muthuraj
,
R.
,
2010
, “
Effects of Thermal Radiation and Space Porosity on MHD Mixed Convection Flow in a Vertical Channel Using Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
,
pp.
2098
2108
.10.1016/j.cnsns.2009.09.003
12.
Muhaimin
,
I.
,
Kandasamy
,
R.
, and
Hashim
,
I.
,
2009
, “
Thermophoresis and Chemical Reaction Effects on Non-Darcy MHD Mixed Convection Heat and Mass Transfer Past a Porous Wedge in the Presence of Variable Stream Condition
,”
Chem. Eng. Res. Des.
,
87
,
pp.
1527
1535
.10.1016/j.cherd.2009.04.005
13.
Hayat
,
T.
,
Mustafa
,
M.
, and
Pop
,
I.
,
2010
, “
Heat and Mass Transfer for Soret and Dufour's Effect on Mixed Convection Boundary Layer Flow Over a Stretching Vertical Surface in a Porous Medium Filled With a Viscoelastic Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
,
pp.
1183
1196
.10.1016/j.cnsns.2009.05.062
14.
Aydn
,
O.
, and
Kaya
,
A.
,
2010
, “
Mixed Convection of a Viscous Dissipating Fluid About a Vertical Flat Plate
,”
Appl. Math. Model.
,
31
,
pp.
843
853
.10.1016/j.apm.2005.12.015
15.
Hsiao
,
K.
,
2011
, “
Unsteady Mixed Convection Viscoelastic Flow and Heat Transfer in a Thin Film Flow Over a Porous Stretching Sheet With Internal Heat Generation
,”
Int. J. Phys. Sci.
,
6
,
pp.
5080
5090
.
16.
Hsiao
,
K.
,
2011
, “
MHD Mixed Convection for Viscoelastic Fluid Past a Porous Wedge
,”
Int. J. Nonlinear Mech.
,
46
,
pp.
1
8
.10.1016/j.ijnonlinmec.2010.06.005
17.
Hsiao
,
K.
,
2010
, “
Heat and Mass Mixed Convection for MHD Viscoelastic Fluid Past a Stretching Sheet With Ohmic Dissipation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
,
pp.
1803
1812
.10.1016/j.cnsns.2009.07.006
18.
Hsiao
,
K.
, and
Hsu
,
C. H.
,
2009
, “
Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Triangular Fin
,”
Nonlinear Anal.: Real World Appl.
,
10
,
pp.
130
143
.10.1016/j.nonrwa.2007.08.018
19.
Merkin
,
J. H.
,
1994
, “
Natural-Convection Boundary-Layer Flow on a Vertical Surface With Newtonian Heating
,”
Int. J. Heat Fluid Flow
,
15
,
pp.
392
398
.10.1016/0142-727X(94)90053-1
20.
Salleh
,
M. Z.
,
Nazar
,
R.
, and
Pop
,
I.
,
2009
, “
Forced Convection Boundary Layer Flow at a Forward Stagnation Point With Newtonian Heating
,”
Chem. Eng. Commun.
,
196
,
pp.
987
996
.10.1080/00986440902797840
21.
Salleh
,
M. Z.
,
Nazar
,
R.
, and
Pop
,
I.
,
2010
, “
Mixed Convection Boundary Layer Flow Over a Horizontal Circular Cylinder With Newtonian Heating
,”
Heat Mass Transfer
,
46
,
pp.
1411
1418
.10.1007/s00231-010-0662-y
22.
Salleh
,
M. Z.
, and
Nazar
,
R.
,
2010
, “
Free Convection Boundary Layer Flow Over a Horizontal Circular Cylinder With Newtonian Heating
,”
Sains Malays
,
39
,
pp.
671
676
23.
Lesnic
,
D.
,
Ingham
,
D. B.
, and
Pop
,
I.
,
1999
, “
Free Convection Boundary Layer Flow Along a Vertical Surface in a Porous Medium With Newtonian Heating
,”
Int. J. Heat Mass Transfer
,
42
,
pp.
2621
2627
.10.1016/S0017-9310(98)00251-8
24.
Pop
,
I.
,
Lesnic
,
D.
, and
Ingham
,
D. B.
,
2000
, “
Asymptotic Solutions for the Free Convection Boundary-Layer Flow Along a Vertical Surface in a Porous Medium With Newtonian Heating
,”
Hybrid Methods Eng.
,
2
,
pp.
31
40
.
25.
Chaudhary
,
R. C.
, and
Jain
,
P.
,
2007
, “
An Exact Solution to the Unsteady Free-Convection Boundary-Layer Flow Past an Impulsively Started Vertical Surface With Newtonian Heating
,”
J. Eng. Phys. Thermo.
,
80
,
pp.
954
960
.10.1007/s10891-007-0127-4
26.
Liao
,
S. J.
,
2009
, “
Notes on the Homotopy Analysis Method: Some Definitions and Theorems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
,
pp.
983
997
.10.1016/j.cnsns.2008.04.013
27.
Abbasbandy
,
S.
, and
Hayat
,
T.
,
2011
, “
On Series Solution for Unsteady Boundary Layer Equations in a Special Third Grade Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
,
pp.
3140
3146
.10.1016/j.cnsns.2010.11.018
28.
Rashidi
,
M. M.
, and
Pour
,
S. A. M.
,
2010
, “
Analytic Approximate Solutions for Unsteady Boundary-Layer Flow and Heat Transfer Due to a Stretching Sheet by Homotopy Analysis Method
,”
Nonlinear Anal.: Model. Control
,
15
(
1
),
pp.
83
95
.
29.
Hayat
,
T.
,
Iqbal
,
Z.
,
Mustafa
,
M.
, and
Obaidat
,
S.
,
2012
, “
Flow and Heat Transfer of Jeffery Fluid Over a Continuously Moving Surface With a Parallel Free Stream
,”
ASME J. Heat Transfer
,
134,
p.
011701
.10.1115/1.4004744
30.
Hossain
,
M. A.
,
Bhowmick
,
S.
, and
Gorla
,
R. S. R.
,
2006
, “
Steady Mixed-Convection Boundary Layer Flow Along a Symmetric Wedge With Variable Surface Temperature
,”
Int. J. Eng. Sci.
,
44
,
pp.
607
620
.10.1016/j.ijengsci.2006.04.007
31.
Kuo
,
B.
,
2005
, “
Heat Transfer Analysis for the Falkner–Skan Wedge Flow by the Differential Transformation Method
,”
Int. J. Heat Mass Transfer
,
48
,
pp.
5036
5046
.10.1016/j.ijheatmasstransfer.2003.10.046
32.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
,
New York
,
pp.
242
249
.
You do not currently have access to this content.