Laser micromachining of an aluminum film on a glass substrate is investigated using a time-resolved transmission imaging technique with nanosecond resolution. Micromachining is performed using a 7 ns pulse-width Nd:YAG laser operating at the 1064 nm wavelength for fluences ranging from 2.2 to 14.5 J/cm2. A nitrogen laser-pumped dye laser with a 3 ns pulse-width and 500 nm wavelength is used as a light source for visualizing the transient hole area. The dye laser is incident on the free surface and a CCD camera behind the sample captures the transmitted light. Images are taken from the back of the sample at various time delays with respect to the beginning of the ablation process, allowing the transient hole area to be measured. For low fluences, the hole opening process is delayed long after the laser pulse and there is significant scatter in the data due to weak driving forces for hole opening. However, for fluences at and above 3.5 J/cm2, the starting time of the process converges to a limiting minimum value of 12 ns, independent of laser fluence. At these fluences, the rate of hole opening is rapid, with the major portion of the holes opened within 25 ns. The second stage of the process is slower and lasts between 100 and 200 ns. The rapid hole opening process at high fluences can be attributed to recoil pressure from explosive phase change. Measurements of the transient shock wave position using the imaging apparatus in shadowgraph mode are used to estimate the pressure behind the shock wave. Recoil pressure estimates indicate pressure values over 90 atm at the highest fluence, which decays rapidly with time due to expansion of the ablation plume. The recoil pressure for all fluences above 3.1 J/cm2 is higher than that required for recoil pressure driven flow due to the transition to explosive phase change above this fluence.

References

1.
Bovatsek
,
J.
,
Tamhankar
,
A.
,
Patel
,
R. S.
,
Bulgakova
,
N. M.
, and
J.
Bonse
,
2010
, “
Thin Film Removal Mechanisms in ns-Laser Processing of Photovoltaic Materials
,”
Thin Solid Films
,
518
, pp.
2897
2904
.10.1016/j.tsf.2009.10.135
2.
Yavas
,
O.
, and
Takai
,
M.
,
1999
, “
Effect of Substrate Absorption on the Efficiency of Laser Patterning of Indium Tin Oxide Thin Films
,”
J. Appl. Phys.
,
85
, pp.
4207
4212
.10.1063/1.370332
3.
Andrew
,
J. E.
,
Dyer
,
P. E.
,
Greenough
,
R. D.
,
Key
,
P. H.
,
1983
, “
Metal Film Removal and Patterning Using a XeCl Laser
,”
Appl. Phys. Lett.
,
43
, pp.
1076
1078
.10.1063/1.94204
4.
Lecours
,
A.
,
Caron
,
M.
,
Ciureanu
,
P.
,
Turcotte
,
G.
,
Ivanov
,
D.
,
Yelon
,
A.
,
Currie
,
J. F.
,
1996
, “
Laser Patterning of Thin-Film Electrochemical Gas Sensors
,”
Appl. Surf. Sci.
,
96-98
, pp.
341
346
.10.1016/0169-4332(95)00441-6
5.
Pfleging
,
W.
,
Ludwig
,
A.
,
Seemann
,
K.
,
Preu
,
R.
,
Mäckel
,
H.
,
Glunz
,
S. W.
,
2000
, “
Laser Micromachining for Applications in Thin Film Technology
,”
Appl. Surf. Sci.
,
154-155
, pp.
633
639
.10.1016/S0169-4332(99)00468-7
6.
Kripesh
,
V.
,
Gust
,
W.
,
Bhatnager
,
S. K.
,
Osterwinter
,
H.
,
2000
, “
Effect of Nd:YAG Laser Micromachining on Gold Conductor Printed over Ceramic Substrates
,”
Mater. Lett.
,
44
, pp.
347
351
.10.1016/S0167-577X(00)00077-X
7.
E.
Matthias
,
E.
,
Reichling
,
M.
,
Siegel
,
J.
,
Kading
,
O. W.
,
Petzoldt
,
S.
,
Skurk
,
H.
,
Bizenberger
,
P.
, and
Neske
,
E.
,
1994
, “
The Influence of Thermal Diffusion on Laser Ablation of Metal Films
,”
Appl. Phys. A
,
58
, pp.
129
136
.10.1007/BF00332169
8.
Cline
,
H. E.
,
1981
, “
Surface Rippling Induced in Thin Films by a Scanning Laser
,”
J. Appl. Phys.
,
52
, pp.
443
448
.10.1063/1.329804
9.
Zhang
,
X.
,
Chu
,
S. S.
,
Ho
,
J. R.
, and
Grigoropoulos
,
C. P.
,
1997
, “
Excimer Laser Ablation of Thin Gold Films on Quartz Crystal Microbalance at Various Argon Background Pressures
,”
Appl. Phys. A
,
64
, pp.
545
552
.10.1007/s003390050514
10.
Lee
,
S. K.
, and
Na
,
S. J.
,
1999
, “
KrF Excimer Laser Ablation of Thin Cr Film on Glass Substrate
,”
Appl. Phys. A
,
68
, pp.
417
423
.10.1007/s003390050916
11.
Veiko
,
V. P.
,
Metev
,
S. M.
,
Kaidanov
,
A. I.
,
Libenson
,
M. N.
, and
Jakovlev
,
E. B.
,
1980
, “
Two-Phase Mechanism of Laser-Induced Removal of Thin Absorbing Films: I. Theory
,”
J. Phys. D
,
13
, pp.
1565
1570
.10.1088/0022-3727/13/8/026
12.
Veiko
,
V. P.
,
Metev
,
S. M.
,
Stamenov
,
K. V.
,
Kalev
,
H. A.
, and
Jurkevitch
,
B. M.
,
1980
, “
Two-Phase Mechanism of Laser-Induced Removal of Thin Absorbing Films: II. Experiment
,”
J. Phys. D
,
13
, pp.
1571
1575
.10.1088/0022-3727/13/8/027
13.
Dömer
,
H.
, and
Bostanjoglo
,
O.
,
2003
, “
Phase Explosion in Laser-Pulsed Metal Films
,”
Appl. Surf. Sci.
,
208-209
, pp.
442
446
.10.1016/S0169-4332(02)01430-7
14.
Willis
,
D. A.
, and
Xu
,
X.
,
2000
, “
Transport Phenomena and Droplet Formation during Pulsed Laser Interaction With Thin Films
,”
ASME J. Heat Transfer
,
122
, pp.
763
770
.10.1115/1.1288931
15.
Ajaev
, V
. S.
, and
Willis
,
D. A.
,
2003
, “
Thermocapillary Flow and Rupture in Films of Molten Metal on a Substrate
,”
Phys. Fluids
,
15
, pp.
3144
3150
.10.1063/1.1605097
16.
Kopač
,
S.
,
Pirš
,
J.
, and
Možina
,
J.
,
1996
, “
Optodynamic Analysis of Direct Laser Writing of Graduation Lines
,”
Appl. Phys. A
,
62
, pp.
77
82
.10.1007/BF01568091
17.
Simon
,
P.
, and
Ihlemann
,
J.
,
1996
, “
Machining of Submicron Structures on Metals and Semiconductors by Ultrashort UV-Laser Pulses
,”
Appl. Phys. A
,
53
, pp.
505
508
.10.1007/BF01571681
18.
Ben-Yakar
,
A.
,
Harkin
,
A.
,
Ashmore
,
J.
,
Byer
,
R. L.
, and
Stone
,
H. A.
,
2007
, “
Thermal and Fluid Processes of a Thin Melt Zone During Femtosecond Laser Ablation of Glass: The Formation of Rims by Single Laser Pulses
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
1447
1459
.10.1088/0022-3727/40/5/021
19.
Miotello
,
A.
, and
Kelly
,
R.
,
1995
, “
Critical Assessment of Thermal Models for Laser Sputtering at High Fluences
,”
Appl. Phys. Lett.
,
67
, pp.
3535
3537
.10.1063/1.114912
20.
Song
,
K. H.
, and
Xu
,
X.
,
1998
, “
Explosive Phase Transformation in Excimer Laser Ablation
,”
Appl. Surf. Sci.
,
127-129
, pp.
111
116
.10.1016/S0169-4332(97)00619-3
21.
Porneala
,
C.
, and
Willis
,
D. A.
2009
, “
Time-Resolved Dynamics of Nanosecond Laser-Induced Phase Explosion
,”
J. Phys. D
,
42
,
155503
.10.1088/0022-3727/42/15/155503
22.
Porneala
,
C.
, and
Willis
,
D. A.
,
2006
, “
Observation of Nanosecond Laser-Induced Phase Explosion in Aluminum
,”
Appl. Phys. Lett.
,
89
,
211121
.10.1063/1.2393158
23.
Fishburn
,
J. M.
,
Withford
,
M. J.
,
Coutts
,
D. W.
, and
Piper
,
J. A.
,
2006
, “
Study of the Fluence Dependent Interplay Between Laser Induced Material Removal Mechanisms in Metals: Vaporization, Melt Displacement, and Melt Ejection
,”
Appl. Surf. Sci.
,
252
, pp.
5182
5188
.10.1016/j.apsusc.2005.07.053
24.
Xu
,
X.
, and
Willis
,
D. A.
,
2002
, “
Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation
,”
ASME J. Heat Transfer
,
124
, pp.
293
298
.10.1115/1.1445792
25.
Stafe
,
M.
,
Vladoiu
, I
.
, and
Popescu
, I
. M.
,
2008
, “
Impact of the Laser Wavelength and Fluence on the Ablation Rate of Aluminum
,”
Cent. Eur. J. Phys.
,
6
, pp.
327
331
.10.2478/s11534-008-0026-0
26.
Iida
,
T.
, and
Guthrie
,
R. I. L.
,
1993
,
The Physical Properties of Liquid Materials
,
Clarendon Press
,
Oxford, UK
.
27.
Hendijanifard
,
M.
and
Willis
,
D. A.
,
2011
, “
An Improved Method to Experimentally Determine Temperature and Pressure Behind Laser-Induced Shock Waves at Low Mach Numbers
,”
J. Phys. D: Appl. Phys.
,
44
,
145501
.10.1088/0022-3727/44/14/145501
You do not currently have access to this content.