The precision of estimates of system performance and of parameters that affect the performance is often based upon the standard deviation obtained from the usual equation for the propagation of variances derived from a Taylor series expansion. With ever increasing computing power it is now possible to utilize the Bayesian hierarchical approach to yield improved estimates of the precision. Although quite popular in the statistical community, the Bayesian approach has not been widely used in the heat transfer and fluid mechanics communities because of its complexity and subjectivity. The paper develops the necessary equations and applies them to two typical heat transfer problems, measurement of conductivity with heat losses and heat transfer from a fin. Because of the heat loss the probability distribution of the conductivity is far from Gaussian. Using this conductivity distribution for the fin gives a very long tailed distribution for the heat transfer from the fin.

References

1.
Brown
,
K. K.
,
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1998
, “
Methodology for Determining Experimental Uncertainties in Regressions
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
445
456
.10.1115/1.2820683
2.
ISO
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement JCGM 100
.”
3.
Bolstad
,
W. M.
,
2004
,
Introduction to Bayesian Statistics
,
Wiley-Interscience
,
New York
.
4.
Barnard
,
G. A.
,
1967
, “The Bayesian Controversy in Statistical Inference,”
J. Inst. Actuaries
,
93
, pp.
229
269
.
5.
Gelman
,
A.
,
2008
, “
Objections to Bayesian Statistics
,”
Bayesian Anal.
,
3
(3), pp.
450
478
.
6.
Kaipio
,
J. P.
, and
Fox
,
C.
,
2011
, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
,
32
(
8
), pp.
L718
L753
.10.1080/01457632.2011.525137
7.
Albert
,
J.
,
2009
,
Bayesian Computation With R
, 2nd ed.,
Springer
,
New York
.
8.
Cowles
,
M. K.
,
2013
,
Applied Bayesian Statistics [Electronic Resource] With R and OpenBUGS Examples
,
Springer
,
New York
.
9.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
2004
,
Bayesian Data Analysis
,
Chapman & Hall/CRC Press
,
Boca Raton
, FL.
10.
Gamerman
,
D.
,
2002
,
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
,
Chapman& Hall/CRC
Press, Boca Raton, FL.
11.
Emery
,
A. F.
,
2001
, “
Higher Order Perturbation Analysis of Stochastic Thermal Systems With Correlated Uncertain Properties
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
390
398
.10.1115/1.1351144
12.
O'Hagan
,
A.
, and
Forster
,
J.
,
2004
,
Bayesian Inference, Kendall's Advanced Theory of Statistics
, Vol.
2b
,
Oxford University
,
Oxford, UK
.
13.
Emery
,
A. F.
,
Bardot
,
D.
, and
Valenti
,
E.
,
2007
, “
Using Bayesian Inference for Parameter Estimation When the System Response and Experimental Conditions are Measured With Error and Some Variables are Considered as Nuisance Variables
,”
Meas. Sci. Technol.
,
18
(
1
), pp.
19
29
.10.1088/0957-0233/18/1/003
14.
Wald
,
A.
,
1950
,
Statistical Decision Functions
,
Wiley
,
New York
.
15.
Conover
,
W. J.
,
1999
,
Practical Nonparametric Statistics
,
Wiley
,
New York
.
16.
Matlab 7.0, The MathWorks, Inc., Natick, MA.
17.
Ripley
,
B. D.
,
1987
,
Stochastic Simulation
,
Wiley
,
New York
.
18.
Johnson
,
M. E.
,
1987
,
Multivariate Statistical Simulation
,
Wiley
,
New York
.
19.
Wang
,
J.
, and
Zabaras
,
N.
,
2005
, “
Using Bayesian Statistics in the Estimation of Heat Source in Radiation
,”
Int. J. Heat Mass Transfer
,
48
, pp.
15
29
.10.1016/j.ijheatmasstransfer.2004.08.009
20.
Emery
,
A. F.
, and
Valenti
,
E.
,
2005
, “
Estimating Parameters of a Packed Bed by Least Squares and Markov Chain Monte Carlo
,”
HTD (Am. Soc. Mech. Eng.)
,
376
(
2
), pp.
643
650
.
21.
Stroud
,
A. H.
, and
Secrest
,
D.
,
1966
,
Gaussian Quadrature Formulas
,
Prentice-Hall Englewood Cliffs
,
NJ
.
22.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
, “
Section 4.6. Gaussian Quadratures and Orthogonal Polynomials
,”
Numerical Recipes: The Art of Scientific Computing
, 3rd ed.,
Cambridge University
,
Cambridge, UK
.
23.
Emery
,
A. F.
, and
Johnson
,
K. C.
,
2012
,“
Practical Considerations When Using Sparse Grids for Parameter Estimation
,”
Inverse Probl. Sci. Eng.
,
20
, pp.
591
608
.10.1080/17415977.2012.675506
24.
Evans
,
M.
, and
Swartz
,
T.
,
1995
, “
Methods for Approximating Integrals in Statistics With Special Emphasis on Bayesian Integration Problems
,”
Stat. Sci.
,
10
, pp.
254
272
.10.1214/ss/1177009938
You do not currently have access to this content.