A noncontact, nondestructive neutron diffraction technique for measuring thermal resistance of buried material interfaces in bulk samples, inaccessible to thermocouple measurements, is described. The technique uses spatially resolved neutron diffraction measurements to measure temperature, and analytical or numerical methods to calculate the corresponding thermal resistance. It was tested at the VULCAN instrument of the Spallation Neutron Source, Oak Ridge National Laboratories on a stack of three 6061 alloy aluminum plates (heat-source, middle-plate, and heat-sink), held in dry thermal contact, at low pressure, in ambient air. The results agreed with thermocouple-based measurements. This technique is applicable to all crystalline materials and most interface configurations, and it can be used for the characterization of thermal resistance across interfaces in actual engineering parts under nonambient conditions and/or in moving/rotating systems.

References

1.
Young
,
D. A.
, and
Maris
,
H. J.
,
1989
, “
Lattice-Dynamical Calculation of the Kapitza Resistance between FCC Lattices
,”
Phys. Rev. B
,
40
(
6
), pp.
3685
3693
.10.1103/PhysRevB.40.3685
2.
Maiti
,
A.
,
Mahan
,
G. D.
, and
Pantelides
,
S. T.
,
1997
, “
Dynamical Simulations of Nonequilibrium Processes—Heat Flow and the Kapitza Resistance across Grain Boundaries
,”
Solid State Commun.
,
102
(
7
), pp.
517
521
.10.1016/S0038-1098(97)00049-5
3.
Mahan
,
G. D.
,
2011
, “
Thermal Transport in Ab Superlattices
,”
Phys. Rev. B
,
83
(
12
),
p. 125313
.10.1103/PhysRevB.83.125313
4.
Cahill
,
D. G.
,
Goodson
,
K. E.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
223
241
.10.1115/1.1454111
5.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2004
, “
Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
,”
J. Appl. Phys.
,
95
(
11
), pp.
6082
6091
.10.1063/1.1702100
6.
Amrit
,
J.
,
2006
, “
Grain Boundary Kapitza Resistance and Grain-Arrangement Induced Anisotropy in the Thermal Conductivity of Polycrystalline Niobium at Low Temperatures
,”
J. Phys. D: Appl. Phys.
,
39
(
20
), pp.
4472
4477
.10.1088/0022-3727/39/20/026
7.
Lewis
,
D. V.
, and
Perkins
,
H. C.
,
1968
, “
Heat Transfer at Interface of Stainless Steel and Aluminum-Influence of Surface Conditions on Directional Effect
,”
Int. J. Heat Mass Transfer
,
11
(
9
), pp.
1371
1393
.10.1016/0017-9310(68)90182-8
8.
Gmelin
,
E.
,
Asen-Palmer
,
M.
,
Reuther
,
M.
, and
Villar
,
R.
,
1999
, “
Thermal Boundary Resistance of Mechanical Contacts between Solids at Sub-Ambient Temperatures
,”
J. Phys. D: Appl. Phys.
,
32
(
6
), pp.
R19
R43
.10.1088/0022-3727/32/6/004
9.
Madhusudana
,
C. V.
,
1996
,
Thermal Contact Conductance
(Mechanical Engineering Series),
Springer
,
New York
.
10.
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2006
, “
Microscopic and Macroscopic Thermal Contact Resistances of Pressed Mechanical Contacts
,”
J. Appl. Phys.
,
100
(
6
), p.
063538
.10.1063/1.2353704
11.
Lambert
,
M. A.
, and
Fletcher
,
L. S.
,
1997
, “
Review of Models for Thermal Contact Conductance of Metals
,”
J. Thermophys. Heat Transfer
,
11
(
2
), pp.
129
140
.10.2514/2.6221
12.
Wahid
,
S. M. S.
,
Madhusudana
,
C.
, and
Leonardi
,
E.
,
2004
, “
Solid Spot Conductance at Low Contact Pressure
,”
Exp. Therm. Fluid Sci.
,
28
(
6
), pp.
489
494
.10.1016/j.expthermflusci.2003.07.007
13.
Ohsone
,
Y.
,
Wu
,
G.
,
Dryden
,
J.
,
Zok
,
F.
, and
Majumdar
,
A.
,
1999
, “
Optical Measurement of Thermal Contact Conductance between Wafer-Like Thin Solid Samples
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
954
963
.10.1115/1.2826086
14.
Voller
,
G. P.
,
Tirovic
,
M.
,
Morris
,
R.
, and
Gibbens
,
P.
,
2003
, “
Analysis of Automotive Disc Brake Cooling Characteristics
,”
Proc. Inst. Mech. Eng. Part D (J. Automob. Eng.)
,
217
(
D8
), pp.
657
666
.10.1243/09544070360692050
15.
Hamasaiid
,
A.
,
Dour
,
G.
,
Loulou
,
T.
, and
Dargusch
,
M. S.
,
2010
, “
A Predictive Model for the Evolution of the Thermal Conductance at the Casting-Die Interfaces in High Pressure Die Casting
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
365
372
.10.1016/j.ijthermalsci.2009.07.014
16.
Woodland
,
S.
,
Crocombe
,
A. D.
,
Chew
,
J. W.
, and
Mills
,
S. J.
,
2011
, “
A New Method for Measuring Thermal Contact Conductance-Experimental Technique and Results
,”
ASME J. Eng. Gas. Turbines Power
,
133
(
7
), p.
071601
.10.1115/1.4001770
17.
Yang
,
Y. Z.
,
Master
,
R.
,
Refai-Ahmed
,
G.
, and
Touzelbaev
,
M.
,
2012
, “
Transient Frequency-Domain Thermal Measurements With Applications to Electronic Packaging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
3
), pp.
448
456
.10.1109/TCPMT.2010.2100712
18.
Volklein
,
F.
,
1990
, “
Thermal-Conductivity and Diffusivity of a Thin-Film SiO2-Si3n4 Sandwich System
,”
Thin Solid Films
,
188
(
1
), pp.
27
33
.10.1016/0040-6090(90)90190-O
19.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Allen
,
T. H.
,
1995
, “
Thermal-Conductivity of Sputtered Oxide-Films
,”
Phys. Rev. B
,
52
(
1
), pp.
253
257
.10.1103/PhysRevB.52.253
20.
Goodson
,
K. E.
,
Kading
,
O. W.
,
Rosner
,
M.
, and
Zachai
,
R.
,
1995
, “
Thermal Conduction Normal to Diamond-Silicon Boundaries
,”
Appl. Phys. Lett.
,
66
(
23
), pp.
3134
3136
.10.1063/1.113625
21.
Goodson
,
K. E.
,
Kading
,
O. W.
,
Rosler
,
M.
, and
Zachai
,
R.
,
1995
, “
Experimental Investigation of Thermal Conduction Normal to Diamond-Silicon Boundaries
,”
J. Appl. Phys.
,
77
(
4
), pp.
1385
1392
.10.1063/1.358950
22.
Kim
,
J. W.
,
Kang
,
J. G.
,
Kim
,
K. C.
, and
Yang
,
H. S.
,
2012
, “
Measurement of the Thermal Conductivity of Gd2zr2o7 Films by Using the Thermoreflectance Method
,”
Thermochim. Acta
,
542
, pp.
11
17
.10.1016/j.tca.2011.12.022
23.
Aravind
,
M.
,
Fung
,
P. C. W.
,
Tang
,
S. Y.
, and
Tam
,
H. L.
,
1996
, “
Two-Beam Photoacoustic Phase Measurement of the Thermal Diffusivity of a Gd-Doped Bulk Ybco Superconductor
,”
Rev. Sci. Instrum.
,
67
(
4
), pp.
1564
1569
.10.1063/1.1146887
24.
Wang
,
X. W.
,
Hu
,
H. P.
, and
Xu
,
X. F.
,
2001
, “
Photo-Acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
138
144
.10.1115/1.1337652
25.
Schriemp
.
Jt
,
1972
, “
Laser Flash Technique for Determining Thermal Diffusivity of Liquid-Metals at Elevated-Temperatures
,”
Rev. Sci. Instrum.
,
43
(
5
), pp.
781
786
.10.1063/1.1685757
26.
Tang
,
D. W.
, and
Araki
,
N.
,
2000
, “
Some Approaches for Obtaining Better Data for Thermal Diffusivities of Thin Materials Measured by the Laser-Flash Method
,”
High Temp.-High Press.
,
32
(
6
), pp.
693
700
.10.1068/htwu203
27.
Polvino
,
S. M.
,
2011
, “
Accuracy Precision and Resolution in Strain Measurements on Diffraction Instruments
,” Ph.D. thesis, Columbia University, New York.
28.
Woo
,
W.
,
Feng
,
Z. L.
,
Wang
,
X. L.
,
An
,
K.
,
Hubbard
,
C. R.
,
David
,
S. A.
, and
Choo
,
H.
,
2006
, “
In Situ Neutron Diffraction Measurement of Transient Temperature and Stress Fields in a Thin Plate
,”
Appl. Phys. Lett.
,
88
(
26
), p.
261903
.10.1063/1.2209888
29.
Trujillo
,
D. M.
, and
Pappoff
,
C. G.
,
2002
, “
A General Thermal Contact Resistance Finite Element
,”
Finite Elem. Anal. Design
,
38
(
3
), pp.
263
276
.10.1016/S0168-874X(01)00063-4
30.
Angadi
,
S. V.
,
Jackson
,
R. L.
,
Choe
,
S. Y.
,
Flowers
,
G. T.
,
Lee
,
B. Y.
, and
Zhong
,
L.
,
2012
, “
A Multiphysics Finite Element Model of a 35a Automotive Connector Including Multiscale Rough Surface Contact
,”
ASME J. Electron. Packag.
,
134
(
1
), p.
011001
.10.1115/1.4005955
31.
Javili
,
A.
,
Mcbride
,
A.
, and
Steinmann
,
P.
,
2012
, “
Numerical Modelling of Thermomechanical Solids With Mechanically Energetic (Generalised) Kapitza Interfaces
,”
Comput. Mater. Sci.
,
65
, pp.
542
551
.10.1016/j.commatsci.2012.06.006
32.
Miloh
,
T.
, and
Benveniste
,
Y.
,
1999
, “
On the Effective Conductivity of Composites With Ellipsoidal Inhomogeneities and Highly Conducting Interfaces
,”
Proc. R. Soc.,London Ser. A
,
455
(
1987
), pp.
2687
2706
.10.1098/rspa.1999.0422
33.
Hashin
,
Z.
,
2001
, “
Thin Interphase/Imperfect Interface in Conduction
,”
J. Appl. Phys.
,
89
(
4
), pp.
2261
2267
.10.1063/1.1337936
34.
Incropera
,
F. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Black
,
J. T.
, and
Kohser
,
R. A.
,
2008
,
Degarmo's Materials and Processes in Manufacturing
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
An
,
K.
,
Skorpenske
,
H. D.
,
Stoica
,
A. D.
,
Ma
,
D.
, and
Wang
,
X.-L.
,
2011
, “
First in Situ Lattice Strains Measurements Under Load at Vulcan
,”
Metall. Mater. Trans. A
,
42
(
1
), pp.
95
99
.10.1007/s11661-010-0495-9
37.
Rietveld
,
H. M.
,
1967
, “
Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement
,”
Acta Crystallogr.
,
22
, pp.
151
152
.10.1107/S0365110X67000234
38.
Vondreele
,
R. B.
,
1997
, “
Quantitative Texture Analysis by Rietveld Refinement
,”
J. Appl. Crystallogr.
,
30
, pp.
517
525
.10.1107/S0021889897005918
39.
Toby
,
B. H.
,
2006
, “
R Factors in Rietveld Analysis: How Good Is Good Enough?
,”
Powder Diffr.
,
21
(
1
), pp.
67
70
.10.1154/1.2179804
40.
Vondreele
,
R. B.
,
Jorgensen
,
J. D.
, and
Windsor
,
C. G.
,
1982
, “
Rietveld Refinement With Spallation Neutron Powder Diffraction Data
,”
J. Appl. Crystallogr.
,
15
(DEC), pp.
581
589
.10.1107/S0021889882012722
41.
abaqus,
2008
, Analysis User Manual V 6.8.
42.
Bray
,
J. W.
,
1990
, “
Nonferrous Alloys and Special-Purpose Materials
,”
Metals Handbook
, Vol. 2, ASM International, Materials Park, OH, pp.
102
103
.
43.
Woodcraft
,
A. L.
,
2005
, “
Predicting the Thermal Conductivity of Aluminium Alloys in the Cryogenic to Room Temperature Range
,”
Cryogenics
,
45
(
6
)
, pp.
421
431
.10.1016/j.cryogenics.2005.02.003
44.
Marquardt
,
E. D.
,
Le
,
J. P.
, and
Radebaugh
,
R.
,
2001
, “
Cryogenic Material Properties Database
,” Cryocoolers 11: Proceedings of the 11th International Cryocooler Conference, R. G. Ross, Jr. ed., Kluwer Academic Publishers, New York, pp.
681
687
.
45.
Kang
,
S. G.
,
Kim
,
M. G.
, and
Kim
,
C. G.
,
2007
, “
Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double-Lap Joints
,”
Compos. Struct.
,
78
(
3
), pp.
440
446
.10.1016/j.compstruct.2005.11.005
46.
NIST
,
2012
,
Material Properties: 6061-T6 Aluminum Uns A96061
, http://cryogenics.nist.gov/MPropsMAY/6061%20Aluminum/6061_T6Aluminum_rev.htm
47.
Yeh
,
C. L.
,
Wen
,
C. Y.
,
Chen
,
Y. F.
,
Yeh
,
S. H.
, and
Wu
,
C. H.
,
2001
, “
An Experimental Investigation of Thermal Contact Conductance Across Bolted Joints
,”
Exp. Therm. Fluid Sci.
,
25
(
6
), pp.
349
357
.10.1016/S0894-1777(01)00096-6
48.
Clausen
,
B.
,
Brown
,
D. W.
, and
Noyan
,
I. C.
,
2012
, “
Engineering Applications of Time-of-Flight Neutron Diffraction
,”
JOM
,
64
(
1
), pp.
117
126
.10.1007/s11837-011-0119-x
49.
Nishino
,
K.
,
Yamashita
,
S.
, and
Torii
,
K.
,
1995
, “
Thermal Contact Conductance—Under Low Applied Load in a Vacuum Environment
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
258
271
.10.1016/0894-1777(94)00091-L
You do not currently have access to this content.