Using a silicon nitride cantilever with an integral silicon tip and a microfabricated platinum–carbon resistance thermometer located close to the tip, a method is developed to concurrently measure both the heat transfer through and adhesion energy of a nanoscale point contact formed between the sharp silicon tip and a silicon substrate in an ultrahigh vacuum atomic force microscope at near room temperature. Several models are used to evaluate the contact area critical for interpreting the interfacial resistance. Near field-thermal radiation conductance was found to be negligible compared to the measured interface thermal conductance determined based on the possible contact area range. If the largest possible contact area is assumed, the obtained thermal interface contact resistance can be explained by a nanoconstriction model that allows the transmission of phonons from the whole Brillouin zone of bulk Si with an average finite transmissivity larger than 0.125. In addition, an examination of the quantum thermal conductance expression suggests the inaccuracy of such a model for explaining measurement results obtained at above room temperature.

References

1.
Bryllert
,
T.
,
Wernersson
,
L. E.
,
Froberg
,
L. E.
, and
Samuelson
,
L.
,
2006
, “
Vertical High-Mobility Wrap-Gated InAs Nanowire Transistor
,”
IEEE Electron. Device Lett.
,
27
(
5
), pp.
323
325
.10.1109/LED.2006.873371
2.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
,
2002
, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
,
80
(
15
), pp.
2767
2769
.10.1063/1.1469696
3.
Huang
,
H.
,
Liu
,
C. H.
,
Wu
,
Y.
, and
Fan
,
S. S.
,
2005
, “
Aligned Carbon Nanotube Composite Films for Thermal Management
,”
Adv. Mater.
,
17
(
13
), pp.
1652
1656
.10.1002/adma.200500467
4.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1658
1666
.10.1016/j.ijheatmasstransfer.2005.09.039
5.
Lyeo
,
H. K.
,
Khajetoorians
,
A. A.
,
Shi
,
L.
,
Pipe
,
K. P.
,
Ram
,
R. J.
,
Shakouri
,
A.
, and
Shih
,
C. K.
,
2004
, “
Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution
,”
Science
,
303
(
5659
), pp.
816
818
.10.1126/science.1091600
6.
Hamann
,
H. F.
,
Martin
,
Y. C.
, and
Wickramasinghe
,
H. K.
,
2004
, “
Thermally Assisted Recording Beyond Traditional Limits
,”
Appl. Phys. Lett.
,
84
(
5
), pp.
810
812
.10.1063/1.1644924
7.
Schwab
,
K.
,
Henriksen
,
E. A.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
2000
, “
Measurement of the Quantum of Thermal Conductance
,”
Nature
,
404
(
6781
), pp.
974
977
.10.1038/35010065
8.
Shi
,
L.
, and
Majumdar
,
A.
,
2002
, “
Thermal Transport Mechanisms at Nanoscale Point Contacts
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
329
337
.10.1115/1.1447939
9.
Kittel
,
A.
,
Müller-Hirsch
,
W.
,
Parisi
,
J.
,
Biehs
,
S.-A.
,
Reddig
,
D.
, and
Holthaus
,
M.
,
2005
, “
Near-Field Heat Transfer in a Scanning Thermal Microscope
,”
Phys. Rev. Lett.
,
95
(
22
), p.
224301
.10.1103/PhysRevLett.95.224301
10.
Park
,
K.
,
Cross
,
G. L. W.
,
Zhang
,
Z. M. M.
, and
King
,
W. P.
,
2008
, “
Experimental Investigation on the Heat Transfer Between a Heated Microcantilever and a Substrate
,”
ASME J. Heat Transfer
,
130
(
10
), p.
102401
.10.1115/1.2953238
11.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R. G.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
,
2010
, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nature Mater.
,
9
(
1
), pp.
26
30
.10.1038/nmat2568
12.
Gotsmann
,
B.
, and
Lantz
,
M. A.
,
2013
, “
Quantized Thermal Transport Across Contacts of Rough Surfaces
,”
Nature Mater.
,
12
(
1
), pp.
59
65
.10.1038/nmat3460
13.
Jalabert
,
L.
,
Sato
,
T.
,
Ishida
,
T.
,
Fujita
,
H.
,
Chalopin
,
Y.
, and
Volz
,
S.
,
2012
, “
Ballistic Thermal Conductance of a Lab-in-a-TEM Made Si Nanojunction
,”
Nano Lett.
,
12
(
10
), pp.
5213
5217
.10.1021/nl302379f
14.
Bartsch
,
T.
,
Schmidt
,
M.
,
Heyn
,
C.
, and
Hansen
,
W.
,
2012
, “
Thermal Conductance of Ballistic Point Contacts
,”
Phys. Rev. Lett.
,
108
(
6
), p.
075901
.10.1103/PhysRevLett.108.075901
15.
Sharvin
,
Y. V.
,
1965
, “
A Possible Method for Studying Fermi Surfaces
,”
J. Exp. Theor. Phys.
,
21
(
3
), pp.
655
–656.
16.
Wexler
,
G.
,
1966
, “
Size Effect and Non-Local Boltzmann Transport Equation in Orifice and Disk Geometry
,”
Proc. Phys. Soc. London
,
89
(
4
), pp.
927
941
.10.1088/0370-1328/89/4/316
17.
Rego
,
L. G. C.
, and
Kirczenow
,
G.
,
1998
, “
Quantized Thermal Conductance of Dielectric Quantum Wires
,”
Phys. Rev. Lett.
,
81
(
1
), pp.
232
235
.10.1103/PhysRevLett.81.232
18.
Segal
,
D.
,
Nitzan
,
A.
, and
Hanggi
,
P.
,
2003
, “
Thermal Conductance Through Molecular Wires
,”
J. Chem. Phys
.,
119
(
13
), pp.
6840
6855
.10.1063/1.1603211
19.
Prasher
,
R.
,
2005
, “
Predicting the Thermal Resistance of Nanosized Constrictions
,”
Nano Lett.
,
5
(
11
), pp.
2155
2159
.10.1021/nl051710b
20.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
,”
Numer. Heat Transfer, Part B
,
51
(
4
), pp.
333
349
.10.1080/10407790601144755
21.
Saha
,
S. K.
, and
Shi
,
L.
,
2007
, “
Molecular Dynamics Simulation of Thermal Transport at a Nanometer Scale Constriction in Silicon
,”
J. Appl. Phys.
,
101
(
7
), p.
074304
.10.1063/1.2715488
22.
Prasher
,
R.
,
Tong
,
T.
, and
Majumdar
,
A.
,
2007
, “
Diffraction-Limited Phonon Thermal Conductance of Nanoconstrictions
,”
Appl. Phys. Lett.
,
91
(
14
), p.
143119
.10.1063/1.2794428
23.
Panzer
,
M. A.
, and
Goodson
,
K. E.
,
2008
,
Thermal Resistance Between Low-Dimensional Nanostructures and Semi-Infinite Media
,”
J. Appl. Phys.
,
103
(
9
), p.
094301
.10.1063/1.2903519
24.
Prasher
,
R.
,
2009
, “
Acoustic Mismatch Model for Thermal Contact Resistance of Van Der Waals Contacts
,”
Appl. Phys. Lett.
,
94
(
4
), p.
041905
.10.1063/1.3075065
25.
Hopkins
,
P. E.
,
Norris
,
P. M.
,
Tsegaye
,
M. S.
, and
Ghosh
,
A. W.
,
2009
, “
Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green's Function Approach Compared to Semiclassical Methods
,”
J. Appl. Phys.
,
106
(
6
), p.
063503
.10.1063/1.3212974
26.
Nikolić
,
B.
, and
Allen
,
P. B.
,
1999
, “
Electron Transport Through a Circular Constriction
,”
Phys. Rev. B
,
60
(
6
), pp.
3963
3969
.10.1103/PhysRevB.60.3963
27.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
28.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(MIT–Pappalardo Series in Mechanical Engineering),
Oxford University
Press,
New York
.
29.
Tubino
,
R.
,
Piseri
,
L.
, and
Zerbi
,
G.
,
1972
, “
Lattice Dynamics and Spectroscopic Properties by a Valence Force Potential of Diamondlike Crystals: C, Si, Ge, and Sn
,”
J. Chem. Phys.
,
56
(
3
), pp.
1022
1039
.10.1063/1.1677264
30.
Zou
,
J.
, and
Balandin
,
A.
,
2001
, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
,
89
(
5
), pp.
2932
2938
.10.1063/1.1345515
31.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
,
2005
, “
Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1129
1137
.10.1115/1.2035114
32.
Paul
,
A.
,
Luisier
,
M.
, and
Klimeck
,
G.
,
2010
, “
Modified Valence Force Field Approach for Phonon Dispersion: From Zinc-Blende Bulk to Nanowires
,”
J. Comput. Electron.
,
9
(
3–4
), pp.
160
172
.10.1007/s10825-010-0332-9
33.
Paul
,
A.
,
Luisier
,
M.
, and
Klimeck
,
G.
,
2011
, “
Influence of Cross-Section Geometry and Wire Orientation on the Phonon Shifts in Ultra-Scaled Si Nanowires
,”
J. Appl. Phys.
,
110
(
9
), p.
094308
.10.1063/1.3656687
34.
Hu
,
M.
, and
Poulikakos
,
D.
,
2012
, “
Si/Ge Superlattice Nanowires With Ultralow Thermal Conductivity
,”
Nano Lett.
,
12
(
11
), pp.
5487
5494
.10.1021/nl301971k
35.
Haanappel
,
E. G.
, and
van der Marel
,
D.
,
1989
, “
Conductance Oscillations in Two-Dimensional Sharvin Point Contacts
,”
Phys. Rev. B
,
39
(
8
), pp.
5484
5487
.10.1103/PhysRevB.39.5484
36.
Mastrangelo
,
C. H.
,
Tai
,
Y.-C.
, and
Muller
,
R. S.
,
1990
, “
Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films
,”
Sens. Actuators, A
,
23
(
1–3
), pp.
856
860
.10.1016/0924-4247(90)87046-L
37.
Huxtable
,
S. T.
,
Cahill
,
D. G.
, and
Phinney
,
L. M.
,
2004
, “
Thermal Contact Conductance of Adhered Microcantilevers
,”
J. Appl. Phys.
,
95
(
4
), pp.
2102
2108
.10.1063/1.1639146
38.
Zhang
,
Q. G.
,
Cao
,
B. Y.
,
Zhang
,
X.
,
Fujii
,
M.
, and
Takahashi
,
K.
,
2006
, “
Influence of Grain Boundary Scattering on the Electrical and Thermal Conductivities of Polycrystalline Gold Nanofilms
,”
Phys. Rev. B
,
74
(
13
), p.
134109
.10.1103/PhysRevB.74.134109
39.
Shi
,
L.
,
Li
,
D. Y.
,
Yu
,
C. H.
,
Jang
,
W. Y.
,
Kim
,
D.
,
Yao
,
Z.
,
Kim
,
P.
, and
Majumdar
,
A.
,
2003
, “
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
881
888
.10.1115/1.1597619
40.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.10.1016/0021-9797(75)90018-1
41.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
42.
Muller
,
V. M.
,
Derjaguin
,
B. V.
, and
Toporov
,
Y. P.
,
1983
, “
On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to a Rigid Plane
,”
Colloids Surf.
,
7
(
3
), pp.
251
259
.10.1016/0166-6622(83)80051-1
43.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
(
1
), pp.
153
156
.10.1063/1.1713863
44.
Clifford
,
C. A.
, and
Seah
,
M. P.
,
2005
, “
The Determination of Atomic Force Microscope Cantilever Spring Constants via Dimensional Methods for Nanomechanical Analysis
,”
Nanotechnology
,
16
(
9
), pp.
1666
1680
.10.1088/0957-4484/16/9/044
45.
Neumeister
,
J. M.
, and
Ducker
,
W. A.
,
1994
, “
Lateral, Normal, and Longitudinal Spring Constants of Atomic-Force Microscopy Cantilevers
,”
Rev. Sci. Instrum.
,
65
(
8
), pp.
2527
2531
.10.1063/1.1144646
46.
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1992
, “
A New Bulge Test Technique for the Determination of Young Modulus and Poisson Ratio of Thin-Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.10.1557/JMR.1992.3242
47.
Albrecht
,
T. R.
,
Akamine
,
S.
,
Carver
,
T. E.
, and
Quate
,
C. F.
,
1990
, “
Microfabrication of Cantilever Styli for the Atomic Force Microscope
,”
J. Vac. Sci. Technol. A
,
8
(
4
), pp.
3386
3396
.10.1116/1.576520
48.
Khan
,
A.
,
Philip
,
J.
, and
Hess
,
P.
,
2004
, “
Young's Modulus of Silicon Nitride Used in Scanning Force Microscope Cantilevers
,”
J. Appl. Phys.
,
95
(
4
), pp.
1667
1672
.10.1063/1.1638886
49.
Espinosa
,
H. D.
,
Prorok
,
B. C.
, and
Fischer
,
M.
,
2003
, “
A Methodology for Determining Mechanical Properties of Freestanding Thin Films and MEMS Materials
,”
J. Mech. Phys. Solids
,
51
(
1
), pp.
47
67
.10.1016/S0022-5096(02)00062-5
50.
Tong
,
Q.-Y.
, and
Gösele
,
U.
,
1999
,
Semiconductor Wafer Bonding: Science and Technology
,
Wiley
,
New York
.
51.
Jaccodine
,
R. J.
,
1963
, “
Surface Energy of Germanium and Silicon
,”
J. Electrochem. Soc.
,
110
(
6
), pp.
524
527
.10.1149/1.2425806
52.
Tong
,
Q.-Y.
,
Kim
,
W. J.
,
Lee
,
T. H.
, and
Gösele
,
U.
,
1998
, “
Low Vacuum Wafer Bonding
,”
Electrochem. Solid-State Lett.
,
1
(
1
), pp.
52
53
.10.1149/1.1390632
53.
Attard
,
P.
, and
Parker
,
J. L.
,
1992
, “
Deformation and Adhesion of Elastic Bodies in Contact
,”
Phys. Rev. A
,
46
(
12
), pp.
7959
7971
.10.1103/PhysRevA.46.7959
54.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2004
, “
Adhesive Contact Based on the Lennard-Jones Potential: A Correction to the Value of the Equilibrium Distance as Used in the Potential
,”
J. Colloid Interface Sci.
,
278
(
2
), pp.
428
435
.10.1016/j.jcis.2004.06.029
55.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Academic
,
Burlington, MA
.
56.
Butt
,
H.-J.
,
Cappella
,
B.
, and
Kappl
,
M.
,
2005
, “
Force Measurements With the Atomic Force Microscope: Technique, Interpretation, and Applications
,”
Surf. Sci. Rep.
,
59
(
1–6
), pp.
1
152
.10.1016/j.surfrep.2005.08.003
57.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
2
13
.10.1016/0021-9797(77)90366-6
58.
Johnson
,
K. L.
,
1997
, “
Adhesion and Friction between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. R. Soc. London, Ser. A
,
453
(
1956
), pp.
163
179
.10.1098/rspa.1997.0010
59.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
60.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1970
,
Thermophysical Properties of Matter. Thermal Conductivity—Metallic Elements and Alloys
,
IFI/Plenum
,
New York
.
61.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.10.1063/1.123994
62.
Li
,
D. Y.
,
Wu
,
Y. Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P. D.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2934
2936
.10.1063/1.1616981
63.
Fu
,
C. J.
, and
Zhang
,
Z. M.
,
2006
, “
Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1703
1718
.10.1016/j.ijheatmasstransfer.2005.09.037
64.
Narayanaswamy
,
A.
,
Shen
,
S.
, and
Chen
,
G.
,
2008
, “
Near-Field Radiative Heat Transfer Between a Sphere and a Substrate
,”
Phys. Rev. B
,
78
(
11
), p.
115303
.10.1103/PhysRevB.78.115303
65.
Rousseau
,
E.
,
Siria
,
A.
,
Jourdan
,
G.
,
Volz
,
S.
,
Comin
,
F.
,
Chevrier
,
J.
, and
Greffet
,
J.-J.
,
2009
, “
Radiative Heat Transfer at the Nanoscale
,”
Nat. Photonics
,
3
(
9
), pp.
514
517
.10.1038/nphoton.2009.144
66.
Pendry
,
J. B.
,
1999
, “
Radiative Exchange of Heat Between Nanostructures
,”
J. Phys.: Condens. Matter
,
11
(
35
), pp.
6621
6633
.10.1088/0953-8984/11/35/301
67.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973
.10.1103/PhysRevB.57.14958
68.
Zhou
,
F.
,
Persson
,
A.
,
Samuelson
,
L.
,
Linke
,
H.
, and
Shi
,
L.
,
2011
, “
Thermal Resistance of a Nanoscale Point Contact to an Indium Arsenide Nanowire
,”
Appl. Phys. Lett.
,
99
(
6
), p.
063110
.10.1063/1.3623758
69.
Hsieh
,
W.-P.
,
Lyons
,
A. S.
,
Pop
,
E.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
,
2011
, “
Pressure Tuning of the Thermal Conductance of Weak Interfaces
,”
Phys. Rev. B
,
84
(
18
), p.
184107
.10.1103/PhysRevB.84.184107
You do not currently have access to this content.