Distributions of ratios of energy scattered or reflected (DRESOR) method is a very efficient tool used to calculate radiative intensity with high directional resolution, which is very useful for inverse analysis. The method is based on the Monte Carlo (MC) method and it can solve radiative problems of great complexity. Unfortunately, it suffers from the drawbacks of the Monte Carlo method, which are large computation time and unavoidable statistical errors. In this work, an equation solving method is applied to calculate DRESOR values instead of using the Monte Carlo sampling in the DRESOR method. The equation solving method obtains very accurate results in much shorter computation time than when using the Monte Carlo method. Radiative intensity with high directional resolution calculated by these two kinds of DRESOR method is compared with that of the reverse Monte Carlo (RMC) method. The equation solving DRESOR (ES-DRESOR) method has better accuracy and much better time efficiency than the Monte Carlo based DRESOR (original DRESOR) method. The ES-DRESOR method shows a distinct advantage for calculating radiative intensity with high directional resolution compared with the reverse Monte Carlo method and the discrete ordinates method (DOM). Heat flux comparisons are also given and the ES-DRESOR method shows very good accuracy.

References

1.
Zhou
,
H.-C.
,
Lou
,
C.
,
Cheng
,
Q.
,
Jiang
,
Z.
,
He
,
J.
,
Huang
,
B.
,
Pei
,
Z.
, and
Lu
,
C.
,
2005
, “
Experimental Investigations on Visualization of Three-Dimensional Temperature Distributions in a Large-Scale Pulverized-Coal-Fired Boiler Furnace
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1699
1706
.10.1016/j.proci.2004.08.090
2.
Liu
,
D.
,
Wang
,
F.
,
Yan
,
J. H.
,
Huang
,
Q. X.
,
Chi
,
Y.
, and
Cen
,
K. F.
,
2008
, “
Inverse Radiation Problem of Temperature Field in Three-Dimensional Rectangular Enclosure Containing Inhomogeneous, Anisotropically Scattering Media
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3434
3441
.10.1016/j.ijheatmasstransfer.2007.11.007
3.
Hottel
,
H. C.
, and
Cohen
,
E. S.
,
1958
, “
Radiant Heat Exchange in a Gas-Filled Enclosure: Allowance for Nonuniformity of Gas Temperature
,”
AIChE J.
,
4
(
1
), pp.
3
14
.10.1002/aic.690040103
4.
Maruyama
,
S.
, and
Aihara
,
T.
,
1997
, “
Radiation Heat Transfer of Arbitrary Three-Dimensional Absorbing, Emitting and Scattering Media and Specular and Diffuse Surfaces
,”
ASME J. Heat Transfer
,
119
(
1
), pp.
129
136
.10.1115/1.2824077
5.
Guo
,
Z.
, and
Maruyama
,
S.
,
2000
, “
Radiative Heat Transfer in Inhomogeneous, Nongray, and Anisotropically Scattering Media
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2325
2336
.10.1016/S0017-9310(99)00309-9
6.
Maruyama
,
S.
,
Takeuchi
,
Y.
,
Sakai
,
S.
, and
Guo
,
Z.
,
2002
, “
Improvement of Computational Time in Radiative Heat Transfer of Three-Dimensional Participating Media Using the Radiation Element Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
239
248
.10.1016/S0022-4073(01)00213-8
7.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1994
, “
Monte Carlo Prediction of Radiative Heat Transfer in Inhomogeneous, Anisotropic, Nongray Media
,”
J. Thermophys. Heat Transfer
,
8
(
1
), pp.
133
139
.10.2514/3.511
8.
Howell
,
J. R.
, and
Tan
,
Z.
,
1990
, “
New Numerical Method for Radiation Heat Transfer in Nonhomogeneous Participating Media
,”
J. Thermophys. Heat Transfer
,
4
(
4
), pp.
419
424
.10.2514/3.203
9.
Hsu
,
P.-F.
,
Tan
,
Z.
, and
Howell
,
J. R.
,
1993
, “
Radiative Transfer by the YIX Method in Nonhomogeneous, Scattering, and Nongray Media
,”
J. Thermophys. Heat Transfer
,
7
(
3
), pp.
487
495
.10.2514/3.444
10.
Mengüç
,
M. P.
, and
Viskanta
,
R.
,
1985
, “
Radiative Transfer in Three-Dimensional Rectangular Enclosures Containing Inhomogeneous, Anisotropically Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
33
(
6
), pp.
533
549
.10.1016/0022-4073(85)90021-4
11.
Truelove
,
J. S.
,
1988
, “
Three-Dimensional Radiation in Absorbing-Emitting-Scattering Media Using the Discrete-Ordinates Approximation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
39
(
1
), pp.
27
31
.10.1016/0022-4073(88)90016-7
12.
Fiveland
,
W. A.
,
1988
, “
Three-Dimensional Radiative Heat-Transfer Solutions by the Discrete-Ordinates Method
,”
J. Thermophys. Heat Transfer
,
2
, pp.
309
316
.10.2514/3.105
13.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
419
425
.10.2514/3.559
14.
Li
,
H.-S.
,
Flamant
,
G.
, and
Lu
,
J.-D.
,
2003
, “
An Alternative Discrete Ordinate Scheme for Collimated Irradiation Problems
,”
Int. Commun. Heat Mass Transfer
,
30
(
1
), pp.
61
70
.10.1016/S0735-1933(03)00008-3
15.
Li
,
H.-S.
,
Zhou
,
H.-C.
,
Lu
,
J.-D.
, and
Zheng
,
C.-G.
,
2003
, “
Computation of 2-D Pinhole Image-Formation Process of Large-Scale Furnaces Using the Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
78
(
3–4
), pp.
437
453
.10.1016/S0022-4073(02)00279-0
16.
Zhou
,
H.-C.
, and
Cheng
,
Q.
,
2004
, “
The DRESOR Method for the Solution of the Radiative Transfer Equation in Gray Plane-Parallel Media
,”
Fourth International Symposium on Radiative Transfer
,
M. P.
Mengüç
, and
N.
Selçuk
, eds.,
Istanbul
,
Turkey
.
17.
Zhou
,
H.-C.
,
Cheng
,
Q.
,
Huang
,
Z.-F.
, and
He
,
C.
,
2007
, “
The Influence of Anisotropic Scattering on the Radiative Intensity in a Gray, Plane-Parallel Medium Calculated by the DRESOR Method
,”
J. Quant. Spectros. Radiat. Transfer
,
104
(
1
), pp.
99
115
.10.1016/j.jqsrt.2006.08.015
18.
Cheng
,
Q.
, and
Zhou
,
H.-C.
,
2007
, “
The DRESOR Method for a Collimated Irradiation on an Isotropically Scattering Layer
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
634
645
.10.1115/1.2712477
19.
Cheng
,
Q.
,
Zhou
,
H.-C.
,
Huang
,
Z.-F.
,
Yu
,
Y.-L.
, and
Huang
,
D.-X.
,
2008
, “
The Solution of Transient Radiative Transfer With Collimated Incident Serial Pulse in a Plane-Parallel Medium by DRESOR Method
,”
ASME J. Heat Transfer
,
130
(
10
), p.
102701
.10.1115/1.2945906
20.
Huang
,
Z.
,
Cheng
,
Q.
,
Zhou
,
H.
, and
Hsu
,
P.-F.
,
2009
, “
Existence of Dual-Peak Temporal Reflectance From a Light Pulse Irradiated Two-Layer Medium
,”
Numer. Heat Transfer, Part A
,
56
(
4
), pp.
342
359
.10.1080/10407780903244304
21.
Cheng
,
Q.
,
Zhou
,
H.-C.
,
Yu
,
Y.-L.
, and
Huang
,
D.-X.
,
2008
, “
Highly-Directional Radiative Intensity in a 2-D Rectangular Enclosure Calculated by the DRESOR Method
,”
Numer. Heat Transfer: Part B
,
54
(
4
), pp.
354
367
.10.1080/10407790802358824
22.
Huang
,
Z.
,
Zhou
,
H.
,
Cheng
,
Q.
, and
Hsu
,
P.-F.
,
2013
, “
Solution of Radiative Intensity With High Directional Resolution in Three-Dimensional Rectangular Enclosures by DRESOR Method
,”
Int. J. Heat Mass Transfer
,
60
, pp.
81
87
.10.1016/j.ijheatmasstransfer.2012.12.056
23.
Wang
,
G.
,
Zhou
,
H.
,
Cheng
,
Q.
,
Wang
,
Z.
, and
Huang
,
Z.
,
2012
, “
Equation-Solving DRESOR Method for Radiative Transfer in a Plane-Parallel, Absorbing, Emitting, and Isotropically Scattering Medium With Transparent Boundaries
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3454
3457
.10.1016/j.ijheatmasstransfer.2012.03.029
24.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
Academic Press
,
San Diego, CA
.
25.
Lu
,
X.
, and
Hsu
,
P. F.
, “
Parallel Computing of an Integral Formulation of Transient Radiation Transport
,”
J. Thermophys. Heat Transfer
,
17
(
4
), pp.
425
433
.10.2514/2.6794
You do not currently have access to this content.