This work addresses the validity of the local effective medium theory (EMT) in predicting the near-field radiative heat transfer between multilayered metamaterials, separated by a vacuum gap. Doped silicon and germanium are used to form the metallodielectric superlattice. Different configurations are considered by setting the layers adjacent to the vacuum spacer as metal–metal (MM), metal–dielectric (MD), or dielectric–dielectric (DD) (where M refers to metallic doped silicon and D refers to dielectric germanium). The calculation is based on fluctuational electrodynamics using the Green's function formulation. The cutoff wave vectors for surface plasmon polaritons (SPPs) and hyperbolic modes are evaluated. Combining the Bloch theory with the cutoff wave vector, the application condition of EMT in predicting near-field radiative heat transfer is presented quantitatively and is verified by exact calculations based on the multilayer formulation.

References

1.
Shalaev
,
V. M.
,
2007
, “
Optical Negative-Index Metamaterials
,”
Nat. Photonics
,
1
, pp.
41
48
.10.1038/nphoton.2006.49
2.
Noginov
,
M.
,
Lapine
,
M.
,
Podolskiy
,
V.
, and
Kivshar
,
Y.
,
2013
, “
Focus Issue: Hyperbolic Metamaterials
,”
Opt. Express
,
21
, pp.
14895
14897
.10.1364/OE.21.014895
3.
Liu
,
X. L.
, and
Zhang
,
Z. M.
,
2013
, “
Metal-Free Low-Loss Negative Refraction in the Mid-Infrared Region
,”
Appl. Phys. Lett.
,
103
, p.
103101
.10.1063/1.4819842
4.
Yao
,
J.
,
Liu
,
Z. W.
,
Liu
,
Y. M.
,
Wang
,
Y.
,
Sun
,
C.
,
Bartal
,
G.
,
Stacy
,
A. M.
, and
Zhang
,
X.
,
2008
, “
Optical Negative Refraction in Bulk Metamaterials of Nanowires
,”
Science
,
321
, p.
930
.10.1126/science.1157566
5.
Jacob
,
Z.
,
Alekseyev
,
L. V.
, and
Narimanov
,
E.
,
2006
, “
Optical Hyperlens: Far-Field Imaging Beyond the Diffraction Limit
,”
Opt. Express
,
14
, pp.
8247
8256
.10.1364/OE.14.008247
6.
Liu
,
Z. W.
,
Lee
,
H.
,
Xiong
,
Y.
,
Sun
,
C.
, and
Zhang
,
X.
,
2007
, “
Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects
,”
Science
,
315
, p.
1686
.10.1126/science.1137368
7.
Liu
,
X. L.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Wideband Tunable Omnidirectional Infrared Absorbers Based on Doped-Silicon Nanowire Arrays
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061602
.10.1115/1.4023578
8.
Choy
,
T. C.
,
1999
,
Effective Medium Theory: Principles and Applications
,
Oxford University
,
Oxford, UK
.
9.
Narayanaswamy
,
A.
,
Shen
,
S.
,
Hu
,
L.
,
Chen
,
X. Y.
, and
Chen
,
G.
,
2009
, “
Breakdown of the Planck Blackbody Radiation Law at Nanoscale Gaps
,”
Appl. Phys. A: Mater. Sci. Process.
,
96
, pp.
357
362
.10.1007/s00339-009-5203-5
10.
Rousseau
,
E.
,
Siria
,
A.
,
Jourdan
,
G.
,
Volz
,
S.
,
Comin
,
F.
,
Chevrier
,
J.
, and
Greffet
,
J. J.
,
2009
, “
Radiative Heat Transfer at the Nanoscale
,”
Nat. Photonics
,
3
, pp.
514
517
.10.1038/nphoton.2009.144
11.
Ottens
,
R. S.
,
Quetschke
,
V.
,
Wise
,
S.
,
Alemi
,
A. A.
,
Lundock
,
R.
,
Mueller
,
G.
,
Reitze
,
D. H.
,
Tanner
,
D. B.
, and
Whiting
,
B. F.
,
2011
, “
Near-Field Radiative Heat Transfer Between Macroscopic Planar Surfaces
,”
Phys. Rev. Lett.
,
107
, p.
014301
.10.1103/PhysRevLett.107.014301
12.
Kralik
,
T.
,
Hanzelka
,
P.
,
Zobac
,
M.
,
Musilova
,
V.
,
Fort
,
T.
, and
Horak
,
M.
,
2012
, “
Strong Near-Field Enhancement of Radiative Heat Transfer Between Metallic Surfaces
,”
Phys. Rev. Lett.
,
109
, p.
224302
.10.1103/PhysRevLett.109.224302
13.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
14.
Liu
,
B.
, and
Shen
,
S.
,
2013
, “
Broadband Near-Field Radiative Thermal Emitter/Absorber Based on Hyperbolic Metamaterials: Direct Numerical Simulation by the Wiener Chaos Expansion Method
,”
Phys. Rev. B
,
87
, p.
115403
.10.1103/PhysRevB.87.115403
15.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2013
, “
Near-Field Thermal Radiation Between Hyperbolic Metamaterials: Graphite and Carbon Nanotubes
,”
Appl. Phys. Lett.
,
103
, p.
213102
.10.1063/1.4832057
16.
Biehs
,
S. A.
,
Tschikin
,
M.
, and
Ben-Abdallah
,
P.
,
2012
, “
Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field
,”
Phys. Rev. Lett.
,
109
, p.
104301
.10.1103/PhysRevLett.109.104301
17.
Dimatteo
,
R. S.
,
Greiff
,
P.
,
Finberg
,
S. L.
,
Young-Waithe
,
K. A.
,
Choy
,
H. K. H.
,
Masaki
,
M. M.
, and
Fonstad
,
C. G.
,
2001
, “
Enhanced Photogeneration of Carriers in a Semiconductor Via Coupling Across a Nonisothermal Nanoscale Vacuum Gap
,”
Appl. Phys. Lett.
,
79
, pp.
1894
1896
.10.1063/1.1400762
18.
Laroche
,
M.
,
Carminati
,
R.
, and
Greffet
,
J. J.
,
2006
, “
Near-Field Thermophotovoltaic Energy Conversion
,”
J. Appl. Phys.
,
100
, p.
063704
.10.1063/1.2234560
19.
Park
,
K.
,
Basu
,
S.
,
King
,
W. P.
, and
Zhang
,
Z. M.
,
2008
, “
Performance Analysis of Near-Field Thermophotovoltaic Devices Considering Absorption Distribution
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
, pp.
305
316
.10.1016/j.jqsrt.2007.08.022
20.
Simovski
,
C.
,
Maslovski
,
S.
,
Nefedov
,
I.
, and
Tretyakov
,
S.
,
2013
, “
Optimization of Radiative Heat Transfer in Hyperbolic Metamaterials for Thermophotovoltaic Applications
,”
Opt. Express
,
21
, pp.
14988
15013
.10.1364/OE.21.014988
21.
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion
,”
Sci. Rep.
,
3
, p. 1083.10.1038/srep01383
22.
Francoeur
,
M.
,
Vaillon
,
R.
, and
Mengüç
,
M. P.
,
2011
, “
Thermal Impacts on the Performance of Nanoscale-Gap Thermophotovoltaic Power Generators
,”
IEEE Trans. Energy Convers.
,
26
, pp.
686
698
.10.1109/TEC.2011.2118212
23.
Bright
,
T. J.
,
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2014
, “
Performance of Near-Field Thermophotovoltaic Cells Enhanced With a Backside Reflector
,”
ASME J. Heat Transfer
,
136
, p.
062701
.10.1115/1.4026455
24.
Ilic
,
O.
,
Jablan
,
M.
,
Joannopoulos
,
J. D.
,
Celanovic
,
I.
, and
Soljačić
,
M.
,
2012
, “
Overcoming the Black Body Limit in Plasmonic and Graphene Near-Field Thermophotovoltaic Systems
,”
Opt. Express
,
20
, pp.
A366
A384
.10.1364/OE.20.00A366
25.
Otey
,
C. R.
,
Lau
,
W. T.
, and
Fan
,
S.
,
2010
, “
Thermal Rectification Through Vacuum
,”
Phys. Rev. Lett.
,
104
, p.
154301
.10.1103/PhysRevLett.104.154301
26.
Basu
,
S.
, and
Francoeur
,
M.
,
2011
, “
Near-Field Radiative Transfer Based Thermal Rectification Using Doped Silicon
,”
Appl. Phys. Lett.
,
98
, p.
113106
.10.1063/1.3567026
27.
Zhu
,
L.
,
Otey
,
C. R.
, and
Fan
,
S.
,
2013
, “
Ultrahigh-Contrast and Large-Bandwidth Thermal Rectification in Near-Field Electromagnetic Thermal Transfer Between Nanoparticles
,”
Phys. Rev. B
,
88
, p.
184301
.10.1103/PhysRevB.88.184301
28.
Yang
,
Y.
,
Basu
,
S.
, and
Wang
,
L.
,
2013
, “
Radiation-Based Near-Field Thermal Rectification With Phase Transition Materials
,”
Appl. Phys. Lett.
,
103
, p.
163101
.10.1063/1.4825168
29.
Wang
,
L. P.
, and
Zhang
,
Z. M.
,
2013
, “
Thermal Rectification Enabled by Near-Field Radiative Heat Transfer Between Intrinsic Silicon and a Dissimilar Material
,”
Nanoscale Microscale Thermophys. Eng.
,
17
, pp.
337
348
.10.1080/15567265.2013.776154
30.
Biehs
,
S.-A.
,
Rosa
,
F. S. S.
, and
Ben-Abdallah
,
P.
,
2011
, “
Modulation of Near-Field Heat Transfer Between Two Gratings
,”
Appl. Phys. Lett.
,
98
, p.
243102
.10.1063/1.3596707
31.
Cui
,
L.
,
Huang
,
Y.
,
Wang
,
J.
, and
Zhu
,
K.-Y.
,
2013
, “
Ultrafast Modulation of Near-Field Heat Transfer With Tunable Metamaterials
,”
Appl. Phys. Lett.
,
102
, p.
053106
.10.1063/1.4790292
32.
Van Zwol
,
P. J.
,
Joulain
,
K.
,
Abdallah
,
P. B.
,
Greffet
,
J. J.
, and
Chevrier
,
J.
,
2011
, “
Fast Nanoscale Heat-Flux Modulation With Phase-Change Materials
,”
Phys. Rev. B
,
83
, p.
201404
.10.1103/PhysRevB.83.201404
33.
Ben-Abdallah
,
P.
, and
Biehs
,
S.-A.
,
2014
, “
Near-Field Thermal Transistor
,”
Phys. Rev. Lett.
,
112
, p.
044301
.10.1103/PhysRevLett.112.044301
34.
Biehs
,
S. A.
,
Ben-Abdallah
,
P.
,
Rosa
,
F. S. S.
,
Joulain
,
K.
, and
Greffet
,
J. J.
,
2011
, “
Nanoscale Heat Flux Between Nanoporous Materials
,”
Opt. Express
,
19
, pp.
A1088
A1103
.10.1364/OE.19.0A1088
35.
Guo
,
Y.
,
Cortes
,
C. L.
,
Molesky
,
S.
, and
Jacob
,
Z.
,
2012
, “
Broadband Super-Planckian Thermal Emission From Hyperbolic Metamaterials
,”
Appl. Phys. Lett.
,
101
, p.
131106
.10.1063/1.4754616
36.
Guo
,
Y.
, and
Jacob
,
Z.
,
2013
, “
Thermal Hyperbolic Metamaterials
,”
Opt. Express
,
21
, pp.
15014
15019
.10.1364/OE.21.015014
37.
Liu
,
B.
,
Shi
,
J.
,
Liew
,
K.
, and
Shen
,
S.
,
2014
, “
Near-Field Radiative Heat Transfer for Si Based Metamaterials
,”
Opt. Commun.
,
314
, pp.
57
65
.10.1016/j.optcom.2013.10.074
38.
Orlov
,
A. A.
,
Voroshilov
,
P. M.
,
Belov
,
P. A.
, and
Kivshar
,
Y. S.
,
2011
, “
Engineered Optical Nonlocality in Nanostructured Metamaterials
,”
Phys. Rev. B
,
84
, p.
045424
.10.1103/PhysRevB.84.045424
39.
Tschikin
,
M.
,
Biehs
,
S. A.
,
Messina
,
R.
, and
Ben-Abdallah
,
P.
,
2013
, “
On the Limits of the Effective Description of Hyperbolic Materials in the Presence of Surface Waves
,”
J. Opt.
,
15
, p.
105101
.10.1088/2040-8978/15/10/105101
40.
Basu
,
S.
,
Lee
,
B. J.
, and
Zhang
,
Z. M.
,
2010
, “
Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023301
.10.1115/1.4000171
41.
Liu
,
X. L.
,
Zhang
,
R. Z.
, and
Zhang
,
Z. M.
,
2014
, “
Near-Field Radiative Heat Transfer With Doped-Silicon Nanostructured Metamaterials
,”
Int. J. Heat Mass Transfer
,
73
, pp.
389
398
.10.1016/j.ijheatmasstransfer.2014.02.021
42.
Francoeur
,
M.
,
Menguc
,
M. P.
, and
Vaillon
,
R.
,
2009
, “
Solution of Near-Field Thermal Radiation in One-Dimensional Layered Media Using Dyadic Green's Functions and the Scattering Matrix Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
, pp.
2002
2018
.10.1016/j.jqsrt.2009.05.010
43.
Zheng
,
Z.
, and
Xuan
,
Y.
,
2011
, “
Theory of Near-Field Radiative Heat Transfer for Stratified Magnetic Media
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1101
1110
.10.1016/j.ijheatmasstransfer.2010.11.012
44.
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2004
, “
Thermal Emission Control With One-Dimensional Metallodielectric Photonic Crystals
,”
Phys. Rev. B
,
70
, p.
125101
.10.1103/PhysRevB.70.125101
45.
Bimonte
,
G.
, and
Santamato
,
E.
,
2007
, “
General Theory of Electromagnetic Fluctuations Near a Homogeneous Surface in Terms of Its Reflection Amplitudes
,”
Phys. Rev. A
,
76
, p.
013810
.10.1103/PhysRevA.76.013810
46.
Guérout
,
R.
,
Lussange
,
J.
,
Rosa
,
F. S. S.
,
Hugonin
,
J. P.
,
Dalvit
,
D. A. R.
,
Greffet
,
J. J.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
,
2012
, “
Enhanced Radiative Heat Transfer Between Nanostructured Gold Plates
,”
Phys. Rev. B
,
85
, p.
180301
.10.1103/PhysRevB.85.180301
47.
Bright
,
T. J.
,
Liu
,
X. L.
, and
Zhang
,
Z. M.
,
2014
, “
Energy Streamlines in Near-Field Radiative Heat Transfer Between Hyperbolic Metamaterials
,”
Opt. Express
22
, pp.
A1112–A1127
.10.1364/OE.22.0A1112
48.
Kidwai
,
O.
,
Zhukovsky
,
S. V.
, and
Sipe
,
J. E.
,
2012
, “
Effective-Medium Approach to Planar Multilayer Hyperbolic Metamaterials: Strengths and Limitations
,”
Phys. Rev. A
,
85
, p.
053842
.10.1103/PhysRevA.85.053842
49.
Basu
,
S.
, and
Zhang
,
Z. M.
,
2009
, “
Ultrasmall Penetration Depth in Nanoscale Thermal Radiation
,”
Appl. Phys. Lett.
,
95
, pp.
133103
133104
.10.1063/1.3238289
50.
Mulet
,
J.-P.
,
Joulain
,
K.
,
Carminati
,
R.
, and
Greffet
,
J.-J.
,
2002
, “
Enhanced Radiative Heat Transfer at Nanometric Distances
,”
Microscale Thermophys. Eng.
,
6
, pp.
209
222
.10.1080/10893950290053321
51.
Francoeur
,
M.
,
Mengüç
,
M. P.
, and
Vaillon
,
R.
,
2011
, “
Coexistence of Multiple Regimes for Near-Field Thermal Radiation Between Two Layers Supporting Surface Phonon Polaritons in the Infrared
,”
Phys. Rev. B
,
84
, p.
075436
.10.1103/PhysRevB.84.075436
52.
Shen
,
S.
,
Mavrokefalos
,
A.
,
Sambegoro
,
P.
, and
Chen
,
G.
,
2012
, “
Nanoscale Thermal Radiation Between Two Gold Surfaces
,”
Appl. Phys. Lett.
,
100
, p.
233114
.10.1063/1.4723713
53.
Wang
,
X. J.
,
Basu
,
S.
, and
Zhang
,
Z. M.
,
2009
, “
Parametric Optimization of Dielectric Functions for Maximizing Nanoscale Radiative Transfer
,”
J. Phys. D: Appl. Phys.
,
42
, p.
245403
.10.1088/0022-3727/42/24/245403
54.
Basu
,
S.
, and
Zhang
,
Z. M.
,
2009
, “
Maximum Energy Transfer in Near-Field Thermal Radiation at Nanometer Distances
,”
J. Appl. Phys.
,
105
, p.
093535
.10.1063/1.3125453
55.
Biehs
,
S. A.
,
Rousseau
,
E.
, and
Greffet
,
J. J.
,
2010
, “
Mesoscopic Description of Radiative Heat Transfer at the Nanoscale
,”
Phys. Rev. Lett.
,
105
, p.
234301
.10.1103/PhysRevLett.105.234301
56.
Pendry
,
J. B.
,
1999
, “
Radiative Exchange of Heat Between Nanostructures
,”
J. Phys.: Condens. Matter
,
11
, pp.
6621
6633
.10.1088/0953-8984/11/35/301
You do not currently have access to this content.