This work deals with the combined mode of non-Fourier conduction and radiation transfer in isotropically/anisotropically scattering, homogeneous, and inhomogeneous planar media with reflective boundaries subjected to the constant internal temperature of the medium and the externally isotropic diffuse incidence at one boundary. An analytical double spherical harmonics method (DPN) is proposed to solve the radiative problem. The non-Fourier conduction is described with the Cattaneo–Vernotte model, and the governing hyperbolic energy equation is solved using the lattice Boltzmann method (LBM). For radiative problems through the layer/layered media, the radiative heat fluxes, hemispherical radiative intensities, transmissivity, and reflectivity are found, while for coupled conduction and radiation, the temperature distributions are found for various optical thicknesses, space-dependent scattering albedo, conduction–radiation parameters, and boundary reflectivities. Results of the present work are in excellent agreement with those available in the literature. Moreover, these results demonstrate that the proposed analytical double spherical method is an efficient, robust, and accurate method for radiative transfer through inhomogeneous layer/layered planar media analysis. Furthermore, it is observed that space-dependent scattering albedo and boundary reflectivities have a very significant effect in the hyperbolic sharp wave front of non-Fourier conduction.

References

1.
Mishra
,
S. C.
, and
Krishna
,
H. C.
,
2011
, “
Analysis of Radiative Transport in a Cylindrical Enclosure—An Application of the Modified Discrete Ordinate Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
6
), pp.
1065
1081
.
2.
Kamdem
,
T. H. T.
,
2015
, “
Ray Effect Elimination in Discrete Ordinates and Finite Volume Methods
,”
J. Thermophys. Heat Transfer
,
29
(
2
), pp.
306
318
.
3.
Dombrovsky
,
L. A.
,
2012
, “
The Use of Transport Approximation and Diffusion-Based Models in Radiative Transfer Calculations
,”
Comput. Therm. Sci.
,
4
(
4
), pp.
297
315
.
4.
Ymeli
,
L. G.
, and
Kamdem
,
T. H. T.
,
2015
, “
High-Order Spherical Harmonics Method for Radiative Transfer in Spherically Symmetric Problems
,”
Comput. Therm. Sci.
,
7
(
4
), pp.
353
371
.
5.
Modest
,
F. M.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
6.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
7.
Tesse
,
L.
,
Dupoirieux
,
F.
,
Zamuner
,
B.
, and
Taine
,
J.
,
2002
, “
Radiative Transfer in Real Gases Using Reciprocal and Forward Monte Carlo Methods and a Correlated-k Approach
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2797
2814
.
8.
Modest
,
F. M.
, and
Lei
,
S.
,
2012
, “
The Simplified Spherical Harmonics Method for Radiative Heat Transfer
,”
J. Phys.: Conf. Ser.
,
369
, p.
012019
.
9.
Dombrovsky
,
L. A.
, and
Baillis
,
D.
,
2010
,
Thermal Radiation in Disperse Systems: An Engineering Approach
,
Begell House
,
Redding, CT
.
10.
Mengüç
,
M.
, and
Iyer
,
K. R.
,
1988
, “
Modeling of Radiative Transfer Using Multiple Spherical Harmonics Approximations
,”
J. Quant. Spectrosc. Radiat. Transfer
,
39
(
6
), pp.
445
561
.
11.
Mishra
,
S. C.
, and
Kumar
,
P. T. B.
,
2009
, “
Analysis of a Hyperbolic Heat Conduction-Radiation Problem With Temperature Dependent Thermal Conductivity
,”
ASME J. Heat Transfer
,
131
(
11
), p.
111302
.
12.
Tzou
,
D. Y.
,
1995
, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3231
3240
.
13.
Mishra
,
S. C.
, and
Stephen
,
A.
,
2011
, “
Combined Mode Conduction and Radiation Heat Transfer in a Spherical Geometry With Non-Fourier Effect
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2975
2989
.
14.
Lam
,
T.
, and
Fong
,
E.
,
2011
, “
Application of Solution Structure Theorem to Non-Fourier Heat Conduction Problems: Analytical Approach
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4796
4806
.
15.
Kar
,
A.
,
Chan
,
C. L.
, and
Mazumder
,
J.
,
1992
, “
Comparative Studies on Nonlinear Hyperbolic and Parabolic Heat Conduction for Various Boundary Conditions: Analytic and Numerical
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
14
20
.
16.
Ji
,
L.
,
Zhenghang
,
Z.
, and
Dengying
,
L.
,
2000
, “
Difference Scheme for Hyperbolic Heat Conduction Equation With Pulsed Heating Boundary
,”
J. Therm. Sci.
,
9
(
2
), pp.
152
157
.
17.
Mishra
,
S. C.
, and
Sahai
,
H.
,
2012
, “
Analyses of Non-Fourier Heat Conduction in 1-D Cylindrical and Spherical Geometry—An Application of the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7015
7023
.
18.
Mishra
,
S. C.
, and
Sahai
,
H.
,
2013
, “
Analysis of Non-Fourier Conduction and Radiation in a Cylindrical Medium Using Lattice Boltzmann Method and Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
61
, pp.
41
55
.
19.
Al Abed
,
A.
, and
Sacadura
,
J.-F.
,
1983
, “
A Monte Carlo-Finite Difference Method for Coupled Radiation-Conduction Heat Transfer in Semitransparent Media
,”
ASME J. Heat Transfer
,
105
(
4
), pp.
931
933
.
20.
Chen
,
T.-M.
,
2010
, “
Numerical Solution of Hyperbolic Heat Conduction Problems in the Cylindrical Coordinate System by the Hybrid Green’s Function Method
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1319
1325
.
21.
Frankel
,
J.
,
Vick
,
B.
, and
Özisik
,
M.
,
1987
, “
General Formulation and Analysis of Hyperbolic Heat Conduction in Composite Media
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1293
1305
.
22.
Chu
,
H.-S.
,
Lin
,
S.
, and
Lin
,
C.-H.
,
2002
, “
Non-Fourier Heat Conduction With Radiation in an Absorbing, Emitting, and Isotropically Scattering Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
6
), pp.
571
582
.
23.
Abhiram
,
K.
,
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2008
, “
Multilayer Differential Discrete Ordinate Method for Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2628
2635
.
24.
Karp
,
H.
,
1998
, “
Recent Advances in the Spherical Harmonics Method
,”
Int. J. Eng. Sci.
,
36
, pp.
1551
1568
.
25.
Ganapol
,
B. D.
,
2015
, “
The Response Matrix Discrete Ordinates Solution to the 1D Radiative Transfer Equation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
154
, pp.
72
90
.
26.
Li
,
L.
,
Zhou
,
L.
, and
Yang
,
M.
,
2016
, “
An Expanded Lattice Boltzmann Method for Dual Phase Lag Model
,”
Int. J. Heat Mass Transfer
,
93
, pp.
834
838
27.
Chaabane
,
R.
,
Askri
,
F.
, and
Nasralla
,
S. B.
,
2011
, “
Application of the Lattice Boltzmann Method to Transient Conduction and Radiation Heat Transfer in Cylindrical Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
12
), pp.
2013
2027
.
28.
Varmazyarl
,
M.
, and
Bazargan
,
M.
,
2013
, “
Development of a Thermal Lattice Boltzmann Method to Simulate Heat Transfer Problems With Variable Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
59
, pp.
363
371
.
29.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method, Fundamental and Engineering Applications With Computer Codes
,
Springer
,
London
.
30.
Loyalka
,
S. K.
,
1969
, “
Radiative Heat Transfer Between Parallel Plates and Concentric Cylinders
,”
Int. J. Heat Mass Transfer
,
12
(
11
), pp.
1513
1517
.
31.
Zhou
,
H.-C.
,
Huang
,
Z.
, and
Cheng
,
Q.
,
2009
, “
The Iterative-DRESOR Method to Solve Radiative Transfer in a Plane-Parallel, Anisotropic Scattering Medium With Specular-Diffuse Boundaries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
, pp.
1072
1084
.
32.
Altaç
,
Z.
, and
Tekkalmaz
,
M.
,
2013
, “
Nodal Synthetic Kernel (N-SKN) Method for Solving Radiative Heat Transfer Problems in One- and Two-Dimensional Participating Medium With Isotropic Scattering
,”
J. Quant. Spectrosc. Radiat. Transfer
,
39
, pp.
214
235
.
33.
Siewert
,
C. E.
,
Maiorino
,
J. R.
, and
Özisik
,
M. N.
,
1980
, “
The Use of the FN Method for Radiative Transfer Problems With Reflective Boundary Conditions
,”
J. Quant. Spectrosc. Radiat. Transfer
,
23
, pp.
545
565
.
34.
Benassi
,
M.
,
Cotta
,
R. M.
, and
Siewert
,
C. E.
,
1983
, “
The PN Method for Radiative Transfer Problems With Reflective Boundary Conditions
,”
J. Quant. Spectrosc. Radiat. Transfer
,
30
(
6
), pp.
547
553
.
35.
Tsai
,
J. R.
,
Özisik
,
M. N.
, and
Santarelli
,
F.
,
1989
, “
Radiation in Spherical Symmetry With Anisotropic Scattering and Variable Properties
,”
J. Quant. Spectrosc. Radiat. Transfer
,
42
(
3
), pp.
187
199
.
36.
Cengel
,
A. Y.
, and
Özisik
,
M. N.
,
1985
, “
Radiation Transfer in an Anisotropically Scattering Plane-Parallel Medium With Space-Dependent Albedo ω(x)
,”
J. Quant. Spectrosc. Radiat. Transfer
,
34
(
3
), pp.
263
270
.
You do not currently have access to this content.