Abstract

Multirow film cooling is widely used in gas turbine airfoils cooling to cope with extremely high inlet temperature. The film cooling effectiveness of diffusion slot holes was measured in multirow arrays at a flat plate experimental facility using the pressure sensitive paints (PSP) technique. Emphasis was focused on the influence mechanism of mainstream turbulence intensity (Tu) and coolant-to-mainstream density ratio (DR) on film cooling effectiveness of multirow arrays with wide exit holes. The diffusion slot hole with exit width of 3.7D and 4.0D was, respectively, tested in three staggered arrays of P/D = 6 and S/D = 30, P/D = 6 and S/D = 20, and P/D = 9 and S/D = 20. Four blowing ratios varied from M = 0.5 to 2.0. The baseline condition (Tu = 3.5%, DR = 1.38) was compared with an increased Tu condition (Tu = 8.4%) and a decreased DR condition (DR = 0.97). The results showed that in two P/D = 6 arrays, increasing Tu decreased the multirow effectiveness considerably under all blowing ratios, but increasing Tu prominently restrained the film coalescence. The influences of Tu were more intense for the arrays with larger exit width holes and larger S/D. Decreasing DR increased multirow effectiveness obviously. The influences of DR tended to consistent for all arrays and the influences were relatively weak for high blowing ratios. In the P/D = 9 array, the superiority of large exit width hole disappeared completely, regardless of Tu and DR variations.

References

1.
Vanfossen
,
G. J.
, and
Bunker
,
R. S.
,
2002
, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From an Advanced Dual-Annular Combustor
,”
ASME
Paper No. GT-2002-30184. 10.1115/GT2002-30184
2.
Kadotani
,
K.
, and
Goldstein
,
R. J.
,
1979
, “
On the Nature of Jets Entering a Turbulent Flow—Part A: Jet-Mainstream Interaction
,”
ASME J. Eng. Power
,
101
(
3
), pp.
459
465
.10.1115/1.3446601
3.
Jumper
,
G. W.
,
Elrod
,
W. C.
, and
Rivir
,
R. B.
,
1991
, “
Film Cooling Effectiveness in High Turbulence Flow
,”
ASME J. Turbomach.
,
113
(
3
), pp.
479
483
.10.1115/1.2927899
4.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.10.1115/1.2840939
5.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2003
, “
The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
669
679
.10.1016/S0142-727X(03)00081-X
6.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness Using PIV and PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041023
.10.1115/1.4003051
7.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1998
, “
Effects of Very High Freestream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
,
120
(
4
), pp.
785
790
.10.1115/1.2841790
8.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
(
4
), pp.
791
798
.10.1115/1.2841791
9.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Freestream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.10.1115/1.1515336
10.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2013
, “
Numerical Investigation of a Film-Cooling Flow Structure: Effect of Crossflow Turbulence
,”
ASME J. Turbomach.
,
135
(
4
), p.
041001
.10.1115/1.4023361
11.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flow Fields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.10.1115/1.4032736
12.
Hayes
,
S. A.
,
Nix
,
A. C.
,
Nestor
,
C. M.
,
Billups
,
D. T.
, and
Haught
,
S. M.
,
2017
, “
Experimental Investigation of the Influence of Freestream Turbulence on an Anti-Vortex Film Cooling Hole
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
314
326
.10.1016/j.expthermflusci.2016.10.025
13.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
14.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.10.1115/1.3450752
15.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
16.
Bell
,
C. M. L.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
1999
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.10.1115/1.521484
17.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.10.1115/1.4002988
18.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.
,
139
(
4
), p.
041003
.10.1115/1.4035044
19.
Bazdidi-Tehrani
,
F.
, and
Andrews
,
G. E.
,
1994
, “
Full-Coverage Discrete Hole Film Cooling: Investigation of the Effect of Variable Density Ratio
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
587
596
.10.1115/1.2906860
20.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.10.1115/1.1400111
21.
Bashir
,
M. H.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Film Cooling Effectiveness for Three-Row Compound Angle Hole Design on Flat Plate Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
115
, pp.
918
929
.10.1016/j.ijheatmasstransfer.2017.08.077
22.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Zhou
,
S.-J.
,
2017
, “
Geometrical Parameter Effects on Film-Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
.10.1115/1.4036007
23.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
24.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.10.1115/1.1400113
25.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.10.1115/1.3068327
26.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
122
133
.10.1016/j.expthermflusci.2013.02.015
27.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using Ply and PSP Techniques
,”
Intl J. Heat Mass Transfer
,
76
, pp.
337
349
.10.1016/j.ijheatmasstransfer.2014.04.028
28.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Heat Transfer
,
134
(
8
), p.
081701
.10.1115/1.4006748
29.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, Chaps. 3 and 4.
30.
Johnson
,
B.
, and
Hui
,
H.
,
2016
, “
Measurement Uncertainty Analysis in Determining Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
12
), p.
121004
.10.1115/1.4033506
31.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
, and
Dees
,
J. E.
,
2017
, “
Adiabatic Film Cooling Effectiveness Measurements Throughout Multi-Row Film Cooling Arrays
,”
ASME J. Turbomach.
,
139
(
10
), p.
101008
.10.1115/1.4035520
32.
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1986
, “
Flat-Plate Film Cooling With Steam Injection Through One Row and Two Rows of Inclined Holes
,”
ASME J. Turbomach.
,
108
(
1
), pp.
137
144
.10.1115/1.3262013
33.
Ligrani
,
P. M.
,
Ciriello
,
S.
, and
Bishop
,
D. T.
,
1992
, “
Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single-Row and Two Staggered Rows of Compound Angle Film-Cooling Holes
,”
ASME J. Turbomach.
,
114
(
4
), pp.
687
700
.10.1115/1.2928021
34.
Jiang
,
Y.
,
Capone
,
L.
,
Ireland
,
P.
, and
Romero
,
E.
,
2018
, “
A Detailed Study of the Interaction Between Two Rows of Cooling Holes
,”
ASME J. Turbomach.
,
140
(
2
), p.
041008
.10.1115/1.4038833
You do not currently have access to this content.