Abstract

Diffusion of volatile flammable species in the air can cause a fire risk within the nuclear reactor containment. However, computational prediction on species concentration distributions remains significantly difficult due to a shortage of multicomponent diffusion coefficients. In this work, considerable effort has been made to calculate concentration distributions of formaldehyde and benzene vapor volatilized from radiation-proof coatings of reactor containment walls. For this purpose, a numerical model is proposed to simulate species transport and concentration distributions due to full multicomponent diffusion and thermal diffusion. Meanwhile, the in-house UDFs' source code is programmed for solving diffusivities and essential thermophysical properties. After compiling and linking the source code with the numerical model, a pressure-based SIMPLE algorithm is imposed for pressure–velocity coupling calculations. Computational results indicate that concentration distributions are highly dependent on the fluid motion as well as potentially flammable areas decrease gradually with increased ventilation rates. Also, primary and secondary vortices are symmetrically distributed about the vertical centerline of the reactor containment as well as triangular secondary vortices can significantly suppress concentrations of formaldehyde and benzene vapor at the bottom portion of the containment. Finally, excellent agreement is observed between computational results and analytical solutions.

References

1.
Su
,
Y.
,
Ng
,
T.
,
Zhang
,
Y.
, and
Davidson
,
J. H.
,
2018
, “
A Mesoscopic Model for Transient Mass Transfer of Volatile Organic Compounds From Porous Walls of Different Structures
,”
Int. J. Heat Mass Transfer
,
117
, pp.
36
49
.10.1016/j.ijheatmasstransfer.2017.09.131
2.
Nait Alla
,
A.
,
Feddaoui
,
M. B.
, and
Meftah
,
H.
,
2018
, “
Comparison of Two Configurations to Improve Heat and Mass Transfer in Evaporating Two-Component Liquid Film Flow
,”
Int. J. Therm. Sci.
,
126
, pp.
194
204
.10.1016/j.ijthermalsci.2017.12.031
3.
Speight
,
J. G.
,
2017
, “
Flammability and Flammability Limits
,” Rules of Thumb for Petroleum Engineers, Wiley, Hoboken, NJ.
4.
Hu
,
H.
,
Lei
,
D.
,
Xing
,
Y.
, and
Li
,
X.
,
2017
, “
Detailed Study on Self- and Multicomponent Diffusion of CO2-CH4 Gas Mixture in Coal by Molecular Simulation
,”
Fuel
,
187
, pp.
220
228
.10.1016/j.fuel.2016.09.056
5.
Gabor
,
K. M.
,
Shindle
,
B.
, and
Chandy
,
A. J.
,
2017
, “
CFD Investigation of Control Parameters in a Steam Contactor Used in Polymer Devolatilization
,”
Int. J. Therm. Sci.
,
120
, pp.
19
30
.10.1016/j.ijthermalsci.2017.05.016
6.
Yuan
,
Y.
,
Tan
,
L.
,
Xu
,
Y.
,
Yuan
,
Y.
, and
Dong
,
J.
,
2019
, “
Numerical and Experimental Study on Drying Shrinkage-Deformation of Apple Slices During Process of Heat-Mass Transfer
,”
Int. J. Therm. Sci.
,
136
, pp.
539
548
.10.1016/j.ijthermalsci.2018.10.042
7.
Soh
,
G. Y.
,
Yeoh
,
G. H.
, and
Timchenko
,
V.
,
2017
, “
A CFD Model for the Coupling of Multiphase, Multicomponent and Mass Transfer Physics for Micro-Scale Simulations
,”
Int. J. Heat Mass Transfer
,
113
, pp.
922
934
.10.1016/j.ijheatmasstransfer.2017.06.001
8.
Gavhane
,
S.
,
Pati
,
S.
, and
Som
,
S. K.
,
2016
, “
Evaporation of Multicomponent Liquid Fuel Droplets: Influences of Component Composition in Droplet and Vapor Concentration in Free Stream Ambience
,”
Int. J. Therm. Sci.
,
105
, pp.
83
95
.10.1016/j.ijthermalsci.2016.03.003
9.
He
,
M.
, and
Qiu
,
H.
,
2016
, “
Internal Flow Patterns of an Evaporating Multicomponent Droplet on a Flat Surface
,”
Int. J. Therm. Sci.
,
100
, pp.
10
19
.10.1016/j.ijthermalsci.2015.09.006
10.
Troshchiev
,
Y. V.
, and
Pavlov
,
G. A.
,
2016
, “
A Methodology of Investigation and Results for Heat Regimes Multiplicity in Chemically Reacting Media With Diffusion and Convection
,”
Int. J. Heat Mass Transfer
,
99
, pp.
234
242
.10.1016/j.ijheatmasstransfer.2016.03.120
11.
Zhang
,
X.
,
Künzel
,
H. M.
,
Zillig
,
W.
,
Mitterer
,
C.
, and
Zhang
,
X.
,
2016
, “
A Fickian Model for Temperature-Dependent Sorption Hysteresis in Hygrothermal Modeling of Wood Materials
,”
Int. J. Heat Mass Transfer
,
100
, pp.
58
64
.10.1016/j.ijheatmasstransfer.2016.04.057
12.
Song
,
Y.
,
Jiang
,
B.
, and
Qu
,
M.
,
2018
, “
Molecular Dynamic Simulation of Self- and Transport Diffusion for CO2/CH4/N2 in Low-Rank Coal Vitrinite
,”
Energy Fuels
,
32
(
3
), pp.
3085
3096
.10.1021/acs.energyfuels.7b03676
13.
Hirschler
,
M.
,
Säckel
,
W.
, and
Nieken
,
U.
,
2016
, “
On Maxwell–Stefan Diffusion in Smoothed Particle Hydrodynamics
,”
Int. J. Heat Mass Transfer
,
103
, pp.
548
554
.10.1016/j.ijheatmasstransfer.2016.07.061
14.
Carle
,
F.
,
Semenov
,
S.
,
Medale
,
M.
, and
Brutin
,
D.
,
2016
, “
Contribution of Convective Transport to Evaporation of Sessile Droplets: Empirical Model
,”
Int. J. Therm. Sci.
,
101
, pp.
35
47
.10.1016/j.ijthermalsci.2015.10.012
15.
Esakkiraja
,
N.
, and
Paul
,
A.
,
2018
, “
A Novel Concept of Pseudo Ternary Diffusion Couple for the Estimation of Diffusion Coefficients in Multicomponent Systems
,”
Scr. Mater.
,
147
, pp.
79
82
.10.1016/j.scriptamat.2018.01.002
16.
Weber
,
P. S.
, and
Bothe
,
D.
,
2016
, “
Applicability of the Linearized Theory of the Maxwell–Stefan Equations
,”
AICHE J.
,
62
(
8
), pp.
2929
2946
.10.1002/aic.15317
17.
Salvarani
,
F.
, and
Soares
,
A. J.
,
2018
, “
On the Relaxation of the Maxwell-Stefan System to Linear Diffusion
,”
Appl. Math. Lett.
,
85
, pp.
15
21
.10.1016/j.aml.2018.05.012
18.
Tong
,
Z. X.
,
He
,
Y. L.
,
Chen
,
L.
, and
Xie
,
T.
,
2014
, “
A Multi-Component Lattice Boltzmann Method in Consistent With Stefan–Maxwell Equations: Derivation, Validation and Application in Porous Medium
,”
Comput. Fluids
,
105
, pp.
155
165
.10.1016/j.compfluid.2014.09.022
19.
Sinha
,
K.
, and
Singh
,
R. S.
,
2016
, “
Numerical Error in the k-ε Turbulence Model Applied to Eddy-Viscous Shock Waves
,”
AIAA J.
,
54
(
11
), pp.
3673
3676
.10.2514/1.J055208
20.
Veltzke
,
T.
,
Pille
,
F.
, and
Thöming
,
J.
,
2016
, “
Delayed Binary and Multicomponent Gas Diffusion in Conical Tubes
,”
Chem. Eng. Sci.
,
148
, pp.
93
107
.10.1016/j.ces.2016.03.029
21.
Chai
,
Z.
,
Sun
,
D.
,
Wang
,
H.
, and
Shi
,
B.
,
2018
, “
A Comparative Study of Local and Nonlocal Allen-Cahn Equations With Mass Conservation
,”
Int. J. Heat Mass Transfer
,
122
, pp.
631
642
.10.1016/j.ijheatmasstransfer.2018.02.013
22.
Arabkhalaj
,
A.
,
Azimi
,
A.
,
Ghassemi
,
H.
, and
Shahsavan Markadeh
,
R.
,
2017
, “
A Fully Transient Approach on Evaporation of Multi-Component Droplets
,”
Appl. Therm. Eng.
,
125
, pp.
584
595
.10.1016/j.applthermaleng.2017.07.054
23.
Chen
,
J.
,
Yan
,
L.
,
Song
,
W.
, and
Xu
,
D.
,
2018
, “
Effect of Heat and Mass Transfer on the Combustion Stability in Catalytic Micro-Combustors
,”
Appl. Therm. Eng.
,
131
, pp.
750
765
.10.1016/j.applthermaleng.2017.12.059
24.
Fang
,
W.-Z.
,
Tang
,
Y.-Q.
,
Chen
,
L.
,
Kang
,
Q.-J.
, and
Tao
,
W.-Q.
,
2018
, “
Influences of the Perforation on Effective Transport Properties of Gas Diffusion Layers
,”
Int. J. Heat Mass Transfer
,
126
, pp.
243
255
.10.1016/j.ijheatmasstransfer.2018.05.016
25.
Safi
,
M. A.
,
Mantzaras
,
J.
,
Prasianakis
,
N. I.
,
Lamibrac
,
A.
, and
Büchi
,
F. N.
,
2019
, “
A Pore-Level Direct Numerical Investigation of Water Evaporation Characteristics Under Air and Hydrogen in the Gas Diffusion Layers of Polymer Electrolyte Fuel Cells
,”
Int. J. Heat Mass Transfer
,
129
, pp.
1250
1262
.10.1016/j.ijheatmasstransfer.2018.10.042
26.
Cooney
,
A. Y.
, and
Singer
,
S. L.
,
2018
, “
Modeling Multicomponent Fuel Droplet Vaporization With Finite Liquid Diffusivity Using Coupled Algebraic-DQMoM With Delumping
,”
Fuel
,
212
, pp.
554
565
.10.1016/j.fuel.2017.10.056
27.
Chen
,
J.
,
Song
,
W.
, and
Xu
,
D.
,
2017
, “
Flame Stability and Heat Transfer Analysis of Methane-Air Mixtures in Catalytic Micro-Combustors
,”
Appl. Therm. Eng.
,
114
, pp.
837
848
.10.1016/j.applthermaleng.2016.12.028
28.
Chatwell
,
R. S.
,
Heinen
,
M.
, and
Vrabec
,
J.
,
2019
, “
Diffusion Limited Evaporation of a Binary Liquid Film
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1296
1305
.10.1016/j.ijheatmasstransfer.2018.12.030
29.
Kozlova
,
S. V.
, and
Ryzhkov
,
I. I.
,
2018
, “
The Transient Separation of Multicomponent Mixtures in a Cylindrical Thermogravitational Column
,”
Int. J. Heat Mass Transfer
,
126
, pp.
660
669
.10.1016/j.ijheatmasstransfer.2018.05.086
30.
Kubaczka
,
A.
,
2014
, “
Prediction of Maxwell–Stefan Diffusion Coefficients in Polymer–Multicomponent Fluid Systems
,”
J. Membr. Sci.
,
470
, pp.
389
398
.10.1016/j.memsci.2014.06.055
31.
Khoshnamvand
,
Y.
, and
Assareh
,
M.
,
2018
, “
Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT
,”
Int. J. Thermophys.
,
39
(
4
), p.
54
.10.1007/s10765-018-2377-0
32.
Siebel
,
D.
,
Schabel
,
W.
, and
Scharfer
,
P.
,
2017
, “
Diffusion in Quaternary Polymer Solutions—Model Development and Validation
,”
Prog. Org. Coat.
,
110
, pp.
187
194
.10.1016/j.porgcoat.2017.05.002
33.
Zhao
,
X.
, and
Jin
,
H.
,
2019
, “
Investigation of Hydrogen Diffusion in Supercritical Water: A Molecular Dynamics Simulation Study
,”
Int. J. Heat Mass Transfer
,
133
, pp.
718
728
.10.1016/j.ijheatmasstransfer.2018.12.164
34.
Wang
,
T.
,
Zhao
,
X.
,
Chen
,
Y.
, and
Zhang
,
M.
,
2019
, “
Energy Conservation for the Weak Solutions to the Equations of Compressible Magnetohydrodynamic Flows in Three Dimensions
,”
J. Math. Anal. Appl.
,
480
(
2
), p.
123373
.10.1016/j.jmaa.2019.07.063
35.
Cao
,
X.
,
Zhou
,
M.
,
Jia
,
S.
,
Yuan
,
X.
, and
Yu
,
K.-T.
,
2019
, “
Maxwell–Stefan Diffusion Coefficient Model Derived From Entropy Generation Minimization Principle for Binary Liquid Mixtures
,”
Chem. Eng. Sci.
,
207
, pp.
30
38
.10.1016/j.ces.2019.06.011
36.
Böttcher
,
K.
,
2010
, “
Numerical Solution of a Multi-Component Species Transport Problem Combining Diffusion and Fluid Flow as Engineering Benchmark
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
231
240
.10.1016/j.ijheatmasstransfer.2009.09.038
37.
Xu
,
H.
,
Luo
,
Z.
,
Lou
,
Q.
,
Zhang
,
S.
, and
Wang
,
J.
,
2019
, “
Lattice Boltzmann Simulations of the Double-Diffusive Natural Convection and Oscillation Characteristics in an Enclosure With Soret and Dufour Effects
,”
Int. J. Therm. Sci.
,
136
, pp.
159
171
.10.1016/j.ijthermalsci.2018.10.015
38.
Lenz
,
S.
,
Krafczyk
,
M.
,
Geier
,
M.
,
Chen
,
S.
, and
Guo
,
Z.
,
2019
, “
Validation of a Two-Dimensional Gas-Kinetic Scheme for Compressible Natural Convection on Structured and Unstructured Meshes
,”
Int. J. Therm. Sci.
,
136
, pp.
299
315
.10.1016/j.ijthermalsci.2018.10.004
39.
Sun
,
C.
, and
Bai
,
B.
,
2017
, “
Diffusion of Gas Molecules on Multilayer Graphene Surfaces: Dependence on the Number of Graphene Layers
,”
Appl. Therm. Eng.
,
116
, pp.
724
730
.10.1016/j.applthermaleng.2017.02.002
40.
Wang
,
Y.-F.
,
Yuan
,
J.
,
Sundén
,
B.
, and
Hu
,
Y.-L.
,
2014
, “
Coarse-Grained Molecular Dynamics Investigation of Nanostructures and Thermal Properties of Porous Anode for Solid Oxide Fuel Cell
,”
J. Power Sources
,
254
, pp.
209
217
.10.1016/j.jpowsour.2013.12.079
41.
Xu
,
B.
,
Chen
,
Z.
, and
Ma
,
Q.
,
2016
, “
Effect of High-Voltage Electric Field on Formaldehyde Diffusion Within Building Materials
,”
Build. Environ.
,
95
, pp.
372
380
.10.1016/j.buildenv.2015.09.022
42.
Makhlaichuk
,
P. V.
,
Makhlaichuk
,
V. N.
, and
Malomuzh
,
N. P.
,
2017
, “
Nature of the Kinematic Shear Viscosity of Low-Molecular Liquids With Averaged Potential of Lennard-Jones Type
,”
J. Mol. Liq.
,
225
, pp.
577
584
.10.1016/j.molliq.2016.11.101
43.
Baigmohammadi
,
M.
, and
Tabejamaat
,
S.
,
2019
, “
Experimental Study on the Effect of External Thermal Pattern on the Dynamics of Methane-Oxygen and Methane-Oxygencarbon Dioxide Premixed Flames in Non-Adiabatic Meso-Scale Reactors
,”
Int. J. Therm. Sci.
,
137
, pp.
242
252
.10.1016/j.ijthermalsci.2018.11.023
44.
Nezbeda
,
I.
,
2016
, “
Simulations of Vapor–Liquid Equilibria: Routine Versus Thoroughness
,”
J. Chem. Eng. Data
,
61
(
12
), pp.
3964
3969
.10.1021/acs.jced.6b00539
45.
Huber
,
M. L.
,
2007
, “
NIST Thermophysical Properties of Hydrocarbon Mixtures Database: Version 3.2
,” National Institute of Standards and Technology, Gaithersburg, MD.
46.
Li
,
R.
,
Liu
,
Z.
,
Han
,
Y.
,
Tan
,
M.
,
Xu
,
Y.
,
Tian
,
J.
,
Chai
,
J.
, and
Liu
,
J.
,
2016
, “
Extended Adiabatic Flame Temperature Method for Lower Flammability Limits Prediction of Fuel-Air-Diluent Mixture by Nonstoichiometric Equation and Nitrogen Equivalent Coefficients
,”
Energy Fuels
,
31
(
1
), pp.
351
361
.10.1021/acs.energyfuels.6b02459
47.
Wang
,
Y.-F.
, and
Wu
,
J.-T.
,
2019
, “
Performance Improvement of Thermal Management System of Lithium-Ion Battery Module on Purely Electric AUVs
,”
Appl. Therm. Eng.
,
146
, pp.
74
84
.10.1016/j.applthermaleng.2018.09.108
48.
Srinarayana
,
N.
,
Armfield
,
S. W.
, and
Lin
,
W.
,
2013
, “
Behaviour of Laminar Plane Fountains With a Parabolic Inlet Velocity Profile in a Homogeneous Fluid
,”
Int. J. Therm. Sci.
,
67
, pp.
87
95
.10.1016/j.ijthermalsci.2012.12.006
49.
Yu
,
P. X.
,
Tian
,
Z. F.
, and
Zhang
,
H.
,
2017
, “
A Rational High-Order Compact Difference Method for the Steady-State Stream Function–Vorticity Formulation of the Navier–Stokes Equations
,”
Comput. Math. Appl.
,
73
(
7
), pp.
1461
1484
.10.1016/j.camwa.2017.01.024
50.
Liu
,
Y. M.
,
Sun
,
J.
,
Zhang
,
D. H.
, and
Zhao
,
D. W.
,
2018
, “
Three-Dimensional Analysis of Edge Rolling Based on Dual-Stream Function Velocity Field Theory
,”
J. Manuf. Processes
,
34
, pp.
349
355
.10.1016/j.jmapro.2018.06.012
You do not currently have access to this content.