Abstract
High-porosity metal foam (MF) is a popular option for high-performance heat exchangers as it offers significantly higher heat transfer participation area per unit volume compared to other convection enhancement cooling methods. Further, metal foams provide highly tortuous flow paths resulting in thermal dispersion assisted by enhanced mixing. This paper presents experimental and numerical studies and the detailed underlying physics of jet array impingement onto high-porosity () thin aluminum foams. The jet and foam configurations were designed for the maximum utilization of the foam area for heat transfer and reduced penalty on the pumping power requirement. Three different pore density foams were tested with three different array-jet impingement configurations. The minimum possible thickness for each pore density was tested, viz., 5 pores-per-inch (PPI): 19 mm, 10 PPI: 12.7 mm, and 20 PPI: 6.35 mm. The baseline case for these foam-based jet impingement configurations was the corresponding configuration of orthogonal jet impingement onto a smooth heated surface, where the distance between the jet-issuing plane and the heated surface was maintained at the foam thickness level. In general, thinner foams facilitated greater jet penetration and increased foam volume usage, resulting in higher heat transfer rates for a given pore density, especially when combined with jet configurations with larger open areas. Finally, we evaluated the thermal hydraulic performance for different foam configurations and the optimum value of a given PPI was found to be at an intermediate rather than the lowest foam thickness.