Abstract

High-porosity metal foam (MF) is a popular option for high-performance heat exchangers as it offers significantly higher heat transfer participation area per unit volume compared to other convection enhancement cooling methods. Further, metal foams provide highly tortuous flow paths resulting in thermal dispersion assisted by enhanced mixing. This paper presents experimental and numerical studies and the detailed underlying physics of jet array impingement onto high-porosity (ε0.95) thin aluminum foams. The jet and foam configurations were designed for the maximum utilization of the foam area for heat transfer and reduced penalty on the pumping power requirement. Three different pore density foams were tested with three different array-jet impingement configurations. The minimum possible thickness for each pore density was tested, viz., 5 pores-per-inch (PPI): 19 mm, 10 PPI: 12.7 mm, and 20 PPI: 6.35 mm. The baseline case for these foam-based jet impingement configurations was the corresponding configuration of orthogonal jet impingement onto a smooth heated surface, where the distance between the jet-issuing plane and the heated surface was maintained at the foam thickness level. In general, thinner foams facilitated greater jet penetration and increased foam volume usage, resulting in higher heat transfer rates for a given pore density, especially when combined with jet configurations with larger open areas. Finally, we evaluated the thermal hydraulic performance for different foam configurations and the optimum value of a given PPI was found to be at an intermediate rather than the lowest foam thickness.

References

1.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
2.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.10.1115/1.1416690
3.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.10.1016/j.ijheatmasstransfer.2005.12.012
4.
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2018
, “
Evaluation of Metal Foam Based Thermoelectric Generators for Automobile Waste Heat Recovery
,”
Int. J. Heat Mass Transfer,
122
, pp.
877
883
.10.1016/j.ijheatmasstransfer.2018.02.029
5.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
6.
Bai
,
M.
, and
Chung
,
J. N.
,
2011
, “
Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
869
880
.10.1016/j.ijthermalsci.2011.01.007
7.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
8.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2005
, “
Natural Convection in Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2452
2463
.10.1016/j.ijheatmasstransfer.2005.01.002
9.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2006
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
.10.1115/1.2229225
10.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5231
5241
.10.1016/j.ijheatmasstransfer.2011.08.020
11.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.10.1016/j.ijheatmasstransfer.2012.03.017
12.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), p.
466
.10.1115/1.2826001
13.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
14.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME Trans. Am. Soc. Mech. Eng. J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
15.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2017
, “
Developing Thermal Flow in Open-Cell Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
129
137
.10.1016/j.ijthermalsci.2016.08.013
16.
Ambrosio
,
G.
,
Bianco
,
N.
,
Chiu
,
W. K.
,
Iasiello
,
M.
,
Naso
,
V.
, and
Oliviero
,
M.
,
2016
, “
The Effect of Open-Cell Metal Foams Strut Shape on Convection Heat Transfer and Pressure Drop
,”
Appl. Therm. Eng.
,
103
, pp.
333
343
.10.1016/j.applthermaleng.2016.04.085
17.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Experimental Study of Forced Convection in Metallic Porous Block Subject to a Confined Slot Jet
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1242
1250
.10.1016/j.ijthermalsci.2007.01.007
18.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
19.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
20.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2007
, “
Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1554
1563
.10.1115/1.2759972
21.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.10.1115/1.3103934
22.
Singh
,
P.
,
Zhang
,
M.
,
Pandit
,
J.
, and
Mahajan
,
R. L.
,
2018
, “
Array Jet Impingement Onto High Porosity Thin Metal Foams at Zero Jet-to-Foam Spacing
,”
ASME
Paper No. IMECE2018-87915, V08BT10A020; p.
9
.
23.
Alhusseny
,
A. N. M.
,
Nasser
,
A.
, and
Al-zurfi
,
N. M.
,
2018
, “
High-Porosity Metal Foams: Potentials, Applications, and Formulations
,” In
Porosity: Process, Technologies and Applications
, IntechOpen, London, UK, p.
181
.
24.
Cunsolo
,
S.
,
Iasiello
,
M.
,
Oliviero
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K.
, and
Naso
,
V.
,
2016
, “
Lord Kelvin and Weaire–Phelan Foam Models: Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer
,
138
(
2
), p.
022601
.
25.
Kelvin
,
L.
, and
Thomson
,
S. W.
,
1887
, “
On the Division of Space With Minimum Partitional Area
,”
Acta Math.
,
11
(
1–4
), pp.
121
134
.10.1007/BF02418046
26.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,” Ph.D. thesis,
University of Colorado
,
Boulder, CO
.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
28.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-Epsilon Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
29.
Hall
,
M. J.
, and
Hiatt
,
J. P.
,
1996
, “
Measurements of Pore Scale Flows Within and Exiting Ceramic Foams
,”
Exp. Fluids
,
20
(
6
), pp.
433
440
.10.1007/BF00189382
30.
ANSYS Fluent Academic Research, Release 14.0
.
31.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
32.
Singh
,
P.
,
Zhang
,
M.
,
Ahmed
,
S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S.
,
2019
, “
Effect of Micro-Roughness Shapes on Jet Impingement Heat Transfer and Fin-Effectiveness
,”
Int. J. Heat Mass Transfer
,
132
, pp.
80
95
.10.1016/j.ijheatmasstransfer.2018.11.135
33.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
34.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
35.
Livingood
,
J. N.
, and
Hrycak
,
P.
,
1973
, “
Impingement Heat Transfer From Turbulent Air Jets to Flat Plates: A Literature Survey
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No. TM-X-2778, E-7298.
36.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying Jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
579
599
.10.1080/10407782.2017.1394136
You do not currently have access to this content.