Abstract

Rarefied gas flows are highly nonequilibrium flows whose flow physics cannot be discerned accurately within the framework of the Navier–Stokes equations. The Burnett equations and the Grad moment equations, which form a super-set of the Navier–Stokes equations, have been proposed in the literature to model such flows but not much success has been achieved because of some inherent limitations of these equations. In this review article, we mainly focus on the recently proposed Onsager-Burnett equations (Singh et al., 2017, “Derivation of stable Burnett equations for rarefied gas flows,” Phys. Rev. E 96, p. 013106) for rarefied gas flows, and the progress achieved so far by solving these equations for some benchmark flow problems. Like Burnett and Grad equations, the OBurnett equations form a super-set of the Navier–Stokes equations and belong to the class of higher order continuum transport equations. However, there are two fundamental aspects where the significance of the OBurnett equations is clearly visible. First, the OBurnett equations are unconditionally stable as well as thermodynamically consistent unlike the conventional Burnett and Grad moment equations. Second, the OBurnett constitutive relations for the stress tensor and the heat flux vector do not have any higher order derivatives of velocity, pressure, or temperature. This is quite significant since now the equations need the same number of boundary conditions as that of the Navier–Stokes equations. As such, the OBurnett equations form a complete theory, which cannot be said for the conventional Burnett equations. These two important aspects help to set the OBurnett equations apart from the rest of the higher order continuum theories. The results of the OBurnett equations are compiled for two benchmark rarefied flow problems: force-driven compressible Poiseuille flow and the normal shock wave flow problem. For force-driven compressible Poiseuille flow, the OBurnett equations successfully capture the nonequilibrium effects such as nonuniform pressure profile and presence of normal stresses and tangential heat flux in the flow. The accurate description of highly nonequilibrium internal structure of normal shocks has always been the stringent test for the higher order continuum theories. The results of the OBurnett equations for normal shocks show that there is no theoretical upper Mach number limit for the equations. Further, the equations predict smooth shock structures at all Mach numbers, existence of heteroclinic trajectory, positive entropy generation throughout the shock, and significant improvement over the results of the Navier–Stokes equations. Finally, the recently proposed Grad's second problem, which has the potential to become a benchmark problem, is discussed. The solution of Grad's second problem for different interaction potentials (Maxwell and hard-sphere molecules) within the Burnett hydrodynamics is also presented at length and some important remarks are made in this context.

References

1.
Gad-el Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
5
33
.10.1115/1.2822013
2.
Torrilhon
,
M.
,
2016
, “
Modeling Nonequilibrium Gas Flow Based on Moment Equations
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
429
458
.10.1146/annurev-fluid-122414-034259
3.
Struchtrup
,
H.
,
2005
,
Macroscopic Transport Equations for Rarefied Gas Flows
,
Springer
, pp.
145
160
.
4.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2019
,
Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics
,
Springer
, pp.
25
365
.
5.
Hadjiconstantinou
,
N. G.
,
2006
, “
The Limits of Navier-Stokes Theory and Kinetic Extensions for Describing Small-Scale Gaseous Hydrodynamics
,”
Phys. Fluids
,
18
(
11
), p.
111301
.10.1063/1.2393436
6.
Lockerby
,
D. A.
, and
Reese
,
J. M.
,
2008
, “
On the Modelling of Isothermal Gas Flows at the Microscale
,”
J. Fluid Mech.
,
604
, pp.
235
261
.10.1017/S0022112008001158
7.
Uribe
,
F.
, and
Garcia
,
A.
,
1999
, “
Burnett Description for Plane Poiseuille Flow
,”
Phys. Rev. E
,
60
(
4
), pp.
4063
4078
.10.1103/PhysRevE.60.4063
8.
Tij
,
M.
, and
Santos
,
A.
,
1994
, “
Perturbation Analysis of a Stationary Nonequilibrium Flow Generated by an External Force
,”
J. Stat. Phys.
,
76
(
5–6
), pp.
1399
1414
.10.1007/BF02187068
9.
Jadhav
,
R. S.
,
Singh
,
N.
, and
Agrawal
,
A.
,
2017
, “
Force-Driven Compressible Plane Poiseuille Flow by Onsager-Burnett Equations
,”
Phys. Fluids
,
29
(
10
), p.
102002
.10.1063/1.4999420
10.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
, “
Report: A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
,
3
(
1
), pp.
43
77
.10.1080/108939599199864
11.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, Vol.
42
,
Clarendon Press
,
Oxford, UK
.
12.
Bird
,
G.
,
2013
,
The DSMC Method
,
CreateSpace Independent Publishing Platform
, Germany.
13.
Balaj
,
M.
,
Roohi
,
E.
, and
Mohammadzadeh
,
A.
,
2017
, “
Regulation of Anti-Fourier Heat Transfer for Non-Equilibrium Gas Flows Through Micro/Nanochannels
,”
Int. J. Therm. Sci.
,
118
, pp.
24
39
.10.1016/j.ijthermalsci.2017.04.009
14.
Akhlaghi
,
H.
,
Roohi
,
E.
,
Balaj
,
M.
, and
Dadzie
,
S. K.
,
2014
, “
Wall Heat Transfer Effects on the Hydro/Thermal Behaviour of Poiseuille Flow in Micro/Nanochannels
,”
Phys. Fluids
,
26
(
9
), p.
092002
.10.1063/1.4894856
15.
Mohammadzadeh
,
A.
,
Rana
,
A. S.
, and
Struchtrup
,
H.
,
2015
, “
Thermal Stress Vs. thermal Transpiration: A Competition in Thermally Driven Cavity Flows
,”
Phys. Fluids
,
27
(
11
), p.
112001
.10.1063/1.4934624
16.
Rana
,
A.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2013
, “
A Robust Numerical Method for the R13 Equations of Rarefied Gas Dynamics: Application to Lid Driven Cavity
,”
J. Comput. Phys.
,
236
, pp.
169
186
.10.1016/j.jcp.2012.11.023
17.
Hemadri
,
V.
,
Biradar
,
G. S.
,
Shah
,
N.
,
Garg
,
R.
,
Bhandarkar
,
U. V.
, and
Agrawal
,
A.
,
2018
, “
Experimental Study of Heat Transfer in Rarefied Gas Flow in a Circular Tube With Constant Wall Temperature
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
326
333
.10.1016/j.expthermflusci.2017.12.030
18.
Varade
,
V.
,
Agrawal
,
A.
, and
Pradeep
,
A. M.
,
2014
, “
Behaviour of Rarefied Gas Flow Near the Junction of a Suddenly Expanding Tube
,”
J. Fluid Mech.
,
739
, pp.
363
391
.10.1017/jfm.2013.615
19.
Varade
,
V.
,
Agrawal
,
A.
,
Prabhu
,
S. V.
, and
Pradeep
,
A. M.
,
2015
, “
Early Onset of Flow Separation With Rarefied Gas Flowing in a 90° Bend Tube
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
221
234
.10.1016/j.expthermflusci.2015.03.029
20.
Burnett
,
D.
,
1936
, “
The Distribution of Molecular Velocities and the Mean Motion in a Non-Uniform Gas
,”
Proc. London Math. Soc.
,
s2–40
(
1
), pp.
382
435
.10.1112/plms/s2-40.1.382
21.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1970
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
,
Cambridge University Press
, Cambridge, UK.
22.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
,
2
(
4
), pp.
331
407
.10.1002/cpa.3160020403
23.
Grad
,
H.
,
1958
,
Principles of the Kinetic Theory of Gases
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
205
294
.
24.
Bobylev
,
A.
,
1982
, “
The Chapman-Enskog and Grad Methods for Solving the Boltzmann Equation
,”
Akad. Nauk SSSR Doklady
,
262
, pp.
71
75
.https://ui.adsabs.harvard.edu/abs/1982DoSSR.262...71B
25.
Uribe
,
F. J.
,
Velasco
,
R. M.
, and
García-Colín
,
L. S.
,
2000
, “
Bobylev's Instability
,”
Phys. Rev. E
,
62
(
4
), pp.
5835
5838
.10.1103/PhysRevE.62.5835
26.
Comeaux
,
K. A.
,
Chapman
,
D. R.
, and
MacCormack
,
R. W.
,
1995
, “
An Analysis of the Burnett Equations Based on the Second Law of Thermodynamics
,”
33rd Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, p.
415
.https://doi.org/10.2514/6.1995-415
27.
Garcia-Colin
,
L.
,
Velasco
,
R.
, and
Uribe
,
F.
,
2008
, “
Beyond the Navier-Stokes Equations: Burnett Hydrodynamics
,”
Phys. Rep.
,
465
(
4
), pp.
149
189
.10.1016/j.physrep.2008.04.010
28.
Zhong
,
X.
,
MacCormack
,
R. W.
, and
Chapman
,
D. R.
,
1993
, “
Stabilization of the Burnett Equations and Application to Hypersonic Flows
,”
AIAA J.
,
31
(
6
), pp.
1036
1043
.10.2514/3.11726
29.
Jin
,
S.
, and
Slemrod
,
M.
,
2001
, “
Regularization of the Burnett Equations Via Relaxation
,”
J. Stat. Phys.
,
103
(
5/6
), pp.
1009
1033
.10.1023/A:1010365123288
30.
Bobylev
,
A.
,
2008
, “
Generalized Burnett Hydrodynamics
,”
J. Stat. Phys.
,
132
(
3
), pp.
569
580
.10.1007/s10955-008-9556-5
31.
Truesdell
,
C.
, and
Muncaster
,
R. G.
,
1980
,
Fundamentals of Maxwel's Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics
, Vol.
83
,
Academic Press
, New York.
32.
Grad
,
H.
,
1952
, “
The Profile of a Steady Plane Shock Wave
,”
Commun. Pure Appl. Math.
,
5
(
3
), pp.
257
300
.10.1002/cpa.3160050304
33.
Struchtrup
,
H.
, and
Torrilhon
,
M.
,
2003
, “
Regularization of Grad's 13 Moment Equations: Derivation and Linear Analysis
,”
Phys. Fluids
,
15
(
9
), pp.
2668
2680
.10.1063/1.1597472
34.
Struchtrup
,
H.
,
2004
, “
Stable Transport Equations for Rarefied Gases at High Orders in the Knudsen Number
,”
Phys. Fluids
,
16
(
11
), pp.
3921
3934
.10.1063/1.1782751
35.
Cai
,
Z.
, and
Wang
,
Y.
,
2020
, “
Regularized 13-Moment Equations for Inverse Power Law Models
,”
J. Fluid Mech.
,
894
, p.
A12
.10.1017/jfm.2020.251
36.
Gu
,
X. J.
, and
Emerson
,
D. R.
,
2009
, “
A High-Order Moment Approach for Capturing Non-Equilibrium Phenomena in the Transition Regime
,”
J. Fluid Mech.
,
636
, pp.
177
216
.10.1017/S002211200900768X
37.
Cercignani
,
C.
,
1988
,
The Boltzmann Equation and Its Applications
(Applied Mathematical Sciences), 1st ed., Vol.
67
,
Springer-Verlag
,
New York
.
38.
Kremer
,
G. M.
,
2010
,
An Introduction to the Boltzmann Equation and Transport Processes in Gases
,
Springer Science & Business Media
, London, UK.
39.
Enskog
,
D.
,
1921
, “
The Numerical Calculation of Phenomena in Fairly Dense Gases
,” Arkiv Mat. Astr. Fys,
16
(
1
), pp.
1
60
, https://catalog.hathitrust.org/Record/000506318
40.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
41.
Holway
,
L. H.
,
1966
, “
New Statistical Models for Kinetic Theory: Methods of Construction
,”
Phys. Fluids
,
9
(
9
), pp.
1658
1673
.10.1063/1.1761920
42.
Balakrishnan
,
R.
,
1999
, “
Entropy Consistent Formulation and Numerical Simulation of the BGK-Burnett Equations for Hypersonic Flows in the Continuum-Transition Regime
,” Ph.D. thesis,
Wichita State University
, Wichita, KA.
43.
Balakrishnan
,
R.
,
2004
, “
An Approach to Entropy Consistency in Second-Order Hydrodynamic Equations
,”
J. Fluid Mech.
,
503
, pp.
201
245
.10.1017/S0022112004007876
44.
Agarwal
,
R. K.
,
Yun
,
K.-Y.
, and
Balakrishnan
,
R.
,
2001
, “
Beyond Navier-Stokes: Burnett Equations for Flows in the Continuum-Transition Regime
,”
Phys. Fluids
,
13
(
10
), pp.
3061
3085
.10.1063/1.1397256
45.
Zheng
,
Y.
, and
Struchtrup
,
H.
,
2004
, “
Burnett Equations for the Ellipsoidal Statistical BGK Model
,”
Contin. Mech. Thermodyn.
,
16
(
1–2
), pp.
97
108
.10.1007/s00161-003-0143-3
46.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.10.1103/PhysRev.37.405
47.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. II
,”
Phys. Rev.
,
38
(
12
), pp.
2265
2279
.10.1103/PhysRev.38.2265
48.
McLennan
,
J. A.
,
1974
, “
Onsager's Theorem and Higher-Order Hydrodynamic Equations
,”
Phys. Rev. A
,
10
(
4
), pp.
1272
1276
.10.1103/PhysRevA.10.1272
49.
Romero
,
M.
, and
Velasco
,
R.
,
1995
, “
Onsager's Symmetry in the Burnett Regime
,”
Phys. A Stat. Mech. Appl.
,
222
(
1–4
), pp.
161
172
.10.1016/0378-4371(95)00203-0
50.
Mahendra
,
A. K.
, and
Singh
,
R. K.
,
2013
, “Onsager Reciprocity Principle for Kinetic Models and Kinetic Schemes,” arXiv preprint arXiv:1308.4119.
51.
Singh
,
N.
, and
Agrawal
,
A.
,
2016
, “
Onsager's-Principle-Consistent 13-Moment Transport Equations
,”
Phys. Rev. E
,
93
(
6
), p.
063111
.10.1103/PhysRevE.93.063111
52.
Singh
,
N.
,
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2017
, “
Derivation of Stable Burnett Equations for Rarefied Gas Flows
,”
Phys. Rev. E
,
96
(
1
), p.
013106
.10.1103/PhysRevE.96.013106
53.
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2020
, “
Strong Shock as a Stringent Test for Onsager-Burnett Equations
,”
Phys. Rev. E
,
102
(
6
), p.
063111
.10.1103/PhysRevE.102.063111
54.
Mansour
,
M. M.
,
Baras
,
F.
, and
Garcia
,
A. L.
,
1997
, “
On the Validity of Hydrodynamics in Plane Poiseuille Flows
,”
Phys. A Stat. Mech. Its Appl.
,
240
(
1–2
), pp.
255
267
.10.1016/S0378-4371(97)00149-0
55.
Taheri
,
P.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2009
, “
Couette and Poiseuille Microflows: Analytical Solutions for Regularized 13-Moment Equations
,”
Phys. Fluids
,
21
(
1
), p.
017102
.10.1063/1.3064123
56.
Todd
,
B. D.
, and
Evans
,
D. J.
,
1997
, “
Temperature Profile for Poiseuille Flow
,”
Phys. Rev. E
,
55
(
3
), pp.
2800
2807
.10.1103/PhysRevE.55.2800
57.
Zheng
,
Y.
,
Garcia
,
A. L.
, and
Alder
,
B. J.
,
2002
, “
Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow
,”
J. Stat. Phys.
,
109
(
3/4
), pp.
495
505
.10.1023/A:1020498111819
58.
Rana
,
A.
,
Ravichandran
,
R.
,
Park
,
J.
, and
Myong
,
R.
,
2016
, “
Microscopic Molecular Dynamics Characterization of the Second-Order non-Navier–Fourier Constitutive Laws in the Poiseuille Gas Flow
,”
Phys. Fluids
,
28
(
8
), p.
082003
.10.1063/1.4959202
59.
Xu
,
K.
,
2003
, “
Super-Burnett Solutions for Poiseuille Flow
,”
Phys. Fluids
,
15
(
7
), pp.
2077
2080
.10.1063/1.1577564
60.
Myong
,
R.
,
2011
, “
A Full Analytical Solution for the Force-Driven Compressible Poiseuille Gas Flow Based on a Nonlinear Coupled Constitutive Relation
,”
Phys. Fluids
,
23
(
1
), p.
012002
.10.1063/1.3540671
61.
Aoki
,
K.
,
Takata
,
S.
, and
Nakanishi
,
T.
,
2002
, “
Poiseuille-Type Flow of a Rarefied Gas Between Two Parallel Plates Driven by a Uniform External Force
,”
Phys. Rev. E
,
65
(
2
), p.
026315
.10.1103/PhysRevE.65.026315
62.
Shah
,
N.
,
Gavasane
,
A.
,
Agrawal
,
A.
, and
Bhandarkar
,
U.
,
2018
, “
Comparison of Various Pressure Based Boundary Conditions for Three-Dimensional Subsonic DSMC Simulation
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031205
.10.1115/1.4037679
63.
Alsmeyer
,
H.
,
1976
, “
Density Profiles in Argon and Nitrogen Shock Waves Measured by the Absorption of an Electron Beam
,”
J. Fluid Mech.
,
74
(
3
), pp.
497
513
.10.1017/S0022112076001912
64.
Erwin
,
D. A.
,
Pham-Van-Diep
,
G. C.
, and
Muntz
,
E. P.
,
1991
, “
Nonequilibrium Gas Flows. I: A Detailed Validation of Monte Carlo Direct Simulation for Monatomic Gases
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
4
), pp.
697
705
.10.1063/1.858075
65.
Holtz
,
T.
, and
Muntz
,
E.
,
1983
, “
Molecular Velocity Distribution Functions in an Argon Normal Shock Wave at Mach Number 7
,”
Phys. Fluids
,
26
(
9
), pp.
2425
2436
.10.1063/1.864428
66.
Pham-Van-Diep
,
G.
,
Erwin
,
D.
, and
Muntz
,
E.
,
1989
, “
Nonequilibrium Molecular Motion in a Hypersonic Shock Wave
,”
Science
,
245
(
4918
), pp.
624
626
.10.1126/science.245.4918.624
67.
Holian
,
B. L.
,
Patterson
,
C.
,
Mareschal
,
M.
, and
Salomons
,
E.
,
1993
, “
Modeling Shock Waves in an Ideal Gas: Going Beyond the Navier-Stokes Level
,”
Phys. Rev. E
,
47
(
1
), pp.
R24
R27
.10.1103/PhysRevE.47.R24
68.
Uribe
,
F. J.
,
Velasco
,
R. M.
,
García-Colín
,
L. S.
, and
Díaz-Herrera
,
E.
,
2000
, “
Shock Wave Profiles in the Burnett Approximation
,”
Phys. Rev. E
,
62
(
5
), pp.
6648
6666
.10.1103/PhysRevE.62.6648
69.
Thomas
,
L.
,
1944
, “
Note on Becker's Theory of the Shock Front
,”
J. Chem. Phys.
,
12
(
11
), pp.
449
453
.10.1063/1.1723889
70.
Johnson
,
B. M.
,
2013
, “
Analytical Shock Solutions at Large and Small Prandtl Number
,”
J. Fluid Mech.
,
726
, p.
R4
.10.1017/jfm.2013.262
71.
Johnson
,
B.
,
2014
, “
Closed-Form Shock Solutions
,”
J. Fluid Mech.
,
745
, p.
R1
.10.1017/jfm.2014.107
72.
Myong
,
R.
,
2014
, “
Analytical Solutions of Shock Structure Thickness and Asymmetry in Navier-Stokes-Fourier Framework
,”
AIAA J.
,
52
(
5
), pp.
1075
1081
.10.2514/1.J052583
73.
Uribe
,
F.
, and
Velasco
,
R.
,
2019
, “
Exact Solutions for Shock Waves in Dilute Gases
,”
Phys. Rev. E
,
100
(
2
), p.
023118
.10.1103/PhysRevE.100.023118
74.
Gilbarg
,
D.
, and
Paolucci
,
D.
,
1953
, “
The Structure of Shock Waves in the Continuum Theory of Fluids
,”
J. Ration. Mech. Anal.
,
2
(
4
), pp.
617
642
.
75.
Müller
,
I.
, and
Ruggeri
,
T.
,
1998
,
Rational Extended Thermodynamics
, Vol.
37
,
Springer Tracts in Natural Philosophy
, New York.
76.
Paolucci
,
S.
, and
Paolucci
,
C.
,
2018
, “
A Second-Order Continuum Theory of Fluids
,”
J. Fluid Mech.
,
846
, pp.
686
710
.10.1017/jfm.2018.291
77.
Uribe
,
F.
, and
Velasco
,
R.
,
2018
, “
Shock-Wave Structure Based on the Navier-Stokes-Fourier Equations
,”
Phys. Rev. E
,
97
(
4
), p.
043117
.10.1103/PhysRevE.97.043117
78.
Becker
,
R.
,
1929
,
Impact Waves Detonation
, Vol.
8
,
Zeitschrift für Physik transtation
, Report No. N.A.C.A.- T.M. No. 505, Washington, DC.
79.
Reese
,
J.
,
Woods
,
L.
,
Thivet
,
F.
, and
Candel
,
S.
,
1995
, “
A Second-Order Description of Shock Structure
,”
J. Comput. Phys.
,
117
(
2
), pp.
240
250
.10.1006/jcph.1995.1062
80.
Foch
,
J.
,
1973
, “
On Higher Order Hydrodynamic Theories of Shock Structure
,”
The Boltzmann Equation
,
Springer
, pp.
123
140
.
81.
Pham-Van-Diep
,
G. C.
,
Erwin
,
D. A.
, and
Muntz
,
E. P.
,
1991
, “
Testing Continuum Descriptions of low-Mach-Number Shock Structures
,”
J. Fluid Mech.
,
232
(
-1
), pp.
403
413
.10.1017/S0022112091003749
82.
Uribe
,
F. J.
,
Velasco
,
R. M.
, and
García-Colín
,
L. S.
,
1998
, “
Burnett Description of Strong Shock Waves
,”
Phys. Rev. Lett.
,
81
(
10
), pp.
2044
2047
.10.1103/PhysRevLett.81.2044
83.
Jadhav
,
R. S.
,
Gavasane
,
A.
, and
Agrawal
,
A.
,
2021
, “
Improved Theory for Shock Waves Using the OBurnett Equations
,”
J. Fluid Mech.
,
929
, p.
A37
.10.1017/jfm.2021.858
84.
Salomons
,
E.
, and
Mareschal
,
M.
,
1992
, “
Usefulness of the Burnett Description of Strong Shock Waves
,”
Phys. Rev. Lett.
,
69
(
2
), pp.
269
272
.10.1103/PhysRevLett.69.269
85.
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2004
, “
Regularized 13-Moment Equations: Shock Structure Calculations and Comparison to Burnett Models
,”
J. Fluid Mech.
,
513
, pp.
171
198
.10.1017/S0022112004009917
86.
Greenshields
,
C. J.
, and
Reese
,
J. M.
,
2007
, “
The Structure of Shock Waves as a Test of Brenner's Modifications to the Navier–Stokes Equations
,”
J. Fluid Mech.
,
580
, pp.
407
429
.10.1017/S0022112007005575
87.
Burnett
,
D.
,
1935
, “
The Distribution of Velocities in a Slightly Non-Uniform Gas
,”
Proc. London Math. Soc.
,
s2-39
(
1
), pp.
385
430
.10.1112/plms/s2-39.1.385
88.
Fiscko
,
K. A.
, and
Chapman
,
D. R.
,
1989
, “
Comparison of Burnett, Super-Burnett, and Monte Carlo Solutions for Hypersonic Shock Structure
,”
Rarefied Gas Dynamics Theoretical and Computational Techniques
, American Institute of Aeronautics and Astronautics, Inc., Pasadena, CA, pp.
374
395
.
89.
Holian
,
B. L.
, and
Mareschal
,
M.
,
2010
, “
Heat-Flow Equation Motivated by the Ideal-Gas Shock Wave
,”
Phys. Rev. E
,
82
(
2
), p.
026707
.10.1103/PhysRevE.82.026707
90.
Holian
,
B. L.
,
Mareschal
,
M.
, and
Ravelo
,
R.
,
2011
, “
Burnett-Cattaneo Continuum Theory for Shock Waves
,”
Phys. Rev. E
,
83
(
2
), p.
026703
.10.1103/PhysRevE.83.026703
91.
Solovchuk
,
M. A.
, and
Sheu
,
T. W.
,
2011
, “
Prediction of Strong-Shock Structure Using the Bimodal Distribution Function
,”
Phys. Rev. E
,
83
(
2
), p.
026301
.10.1103/PhysRevE.83.026301
92.
Brenner
,
H.
,
2005
, “
Navier–Stokes Revisited
,”
Phys. A Stat. Mech. Appl.
,
349
(
1–2
), pp.
60
132
.10.1016/j.physa.2004.10.034
93.
Brenner
,
H.
,
2009
, “
Bi-Velocity Hydrodynamics
,”
Phys. A Stat. Mech. Appl.
,
388
(
17
), pp.
3391
3398
.10.1016/j.physa.2009.04.029
94.
Greenshields
,
C. J.
, and
Reese
,
J. M.
,
2007
, “The Structure of Hypersonic Shock Waves Using Navier-Stokes Equations Modified to Include Mass Diffusion,” arXiv preprint arXiv:0706.0141.
95.
Uribe
,
F. J.
,
2011
, “
The Shock Wave Problem Revisited: The Navier–Stokes Equations and Brenner's Two Velocity Hydrodynamics
,”
Coping With Complexity: Model Reduction and Data Analysis
,
Springer
, Berlin, Heidelberg, pp.
207
229
.
96.
Reddy
,
M. L.
,
Dadzie
,
S. K.
,
Ocone
,
R.
,
Borg
,
M. K.
, and
Reese
,
J. M.
,
2019
, “
Recasting Navier-Stokes Equations
,”
J. Phys. Commun.
,
3
(
10
), p.
105009
.10.1088/2399-6528/ab4b86
97.
Reddy
,
M. L.
, and
Dadzie
,
S. K.
,
2020
, “
Reinterpreting Shock Wave Structure Predictions Using the Navier-Stokes Equations
,”
Shock Waves
,
30
(
5
), pp.
513
521
.10.1007/s00193-020-00952-1
98.
Myong
,
R.
,
1999
, “
Thermodynamically Consistent Hydrodynamic Computational Models for High-Knudsen-Number Gas Flows
,”
Phys. Fluids
,
11
(
9
), pp.
2788
2802
.10.1063/1.870137
99.
Myong
,
R.
,
2014
, “
On the High Mach Number Shock Structure Singularity Caused by Overreach of Maxwellian Molecules
,”
Phys. Fluids
,
26
(
5
), p.
056102
.10.1063/1.4875587
100.
Jiang
,
Z.
,
Zhao
,
W.
,
Chen
,
W.
, and
Agarwal
,
R.
,
2019
, “
Computation of Shock Wave Structure Using a Simpler Set of Generalized Hydrodynamic Equations Based on Nonlinear Coupled Constitutive Relations
,”
Shock Waves
,
29
(
8
), pp.
1227
1239
.10.1007/s00193-018-0876-3
101.
Bobylev
,
A.
,
Bisi
,
M.
,
Cassinari
,
M.
, and
Spiga
,
G.
,
2011
, “
Shock Wave Structure for Generalized Burnett Equations
,”
Phys. Fluids
,
23
(
3
), p.
030607
.10.1063/1.3561067
102.
Weiss
,
W.
,
1995
, “
Continuous Shock Structure in Extended Thermodynamics
,”
Phys. Rev. E
,
52
(
6
), pp.
R5760
R5763
.10.1103/PhysRevE.52.R5760
103.
Timokhin
,
M. Y.
,
Struchtrup
,
H.
,
Kokhanchik
,
A.
, and
Bondar
,
Y. A.
,
2017
, “
Different Variants of R13 Moment Equations Applied to the Shock-Wave Structure
,”
Phys. Fluids
,
29
(
3
), p.
037105
.10.1063/1.4977978
104.
Mott-Smith
,
H. M.
,
1951
, “
The Solution of the Boltzmann Equation for a Shock Wave
,”
Phys. Rev.
,
82
(
6
), pp.
885
892
.10.1103/PhysRev.82.885
105.
Holian
,
B. L.
,
1988
, “
Modeling Shock-Wave Deformation Via Molecular Dynamics
,”
Phys. Rev. A
,
37
(
7
), pp.
2562
2568
.10.1103/PhysRevA.37.2562
106.
Velasco
,
R.
, and
Uribe
,
F.
,
2021
, “
A Study on the Holian Conjecture and Linear Irreversible Thermodynamics for Shock-Wave Structure
,”
Wave Motion
,
100
, p.
102684
.10.1016/j.wavemoti.2020.102684
107.
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2020
, “
Grad's Second Problem and Its Solution Within the Framework of Burnett Hydrodynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
10
), p.
102105
.10.1115/1.4047518
108.
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2021
, “
Evaluation of Grad's Second Problem Using Different Higher Order Continuum Theories
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
1
), p.
012102
.10.1115/1.4048736
109.
Asmolov
,
E. S.
,
Makashev
,
N. K.
, and
Nosik
,
V. I.
,
1979
, “
Heat Transfer Between Plane Parallel Plates in a Gas of Maxwellian Molecules
,”
Akad. Nauk SSSR Doklady
,
249
, pp.
577
580
. https://ui.adsabs.harvard.edu/abs/1979DoSSR.249..577A
110.
Montanero
,
J.
,
Alaoui
,
M.
,
Santos
,
A.
, and
Garzó
,
V.
,
1994
, “
Monte Carlo Simulation of the Boltzmann Equation for Steady Fourier Flow
,”
Phys. Rev. E
,
49
(
1
), pp.
367
375
.10.1103/PhysRevE.49.367
111.
Santos
,
A.
,
2009
, “
Solutions of the Moment Hierarchy in the Kinetic Theory of Maxwell Models
,”
Contin. Mech. Thermodyn.
,
21
(
5
), pp.
361
387
.10.1007/s00161-009-0113-5
112.
Santos
,
A.
,
Brey
,
J. J.
, and
Garzó
,
V.
,
1986
, “
Kinetic Model for Steady Heat Flow
,”
Phys. Rev. A
,
34
(
6
), pp.
5047
5050
.10.1103/PhysRevA.34.5047
113.
Struchtrup
,
H.
, and
Torrilhon
,
M.
,
2007
, “
H Theorem, Regularization, and Boundary Conditions for Linearized 13 Moment Equations
,”
Phys. Rev. Lett.
,
99
(
1
), p.
014502
.10.1103/PhysRevLett.99.014502
114.
Gu
,
X.
, and
Emerson
,
D.
,
2007
, “
A Computational Strategy for the Regularized 13 Moment Equations With Enhanced Wall-Boundary Conditions
,”
J. Comput. Phys.
,
225
(
1
), pp.
263
283
.10.1016/j.jcp.2006.11.032
115.
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2008
, “
Boundary Conditions for Regularized 13-Moment-Equations for Micro-Channel-Flows
,”
J. Comput. Phys.
,
227
(
3
), pp.
1982
2011
.10.1016/j.jcp.2007.10.006
116.
Rana
,
A. S.
, and
Struchtrup
,
H.
,
2016
, “
Thermodynamically Admissible Boundary Conditions for the Regularized 13 Moment Equations
,”
Phys. Fluids
,
28
(
2
), p.
027105
.10.1063/1.4941293
117.
Singh
,
N.
, and
Agrawal
,
A.
,
2014
, “
The Burnett Equations in Cylindrical Coordinates and Their Solution for Flow in a Microtube
,”
J. Fluid Mech.
,
751
, pp.
121
141
.10.1017/jfm.2014.290
118.
Singh
,
N.
,
Dongari
,
N.
, and
Agrawal
,
A.
,
2014
, “
Analytical Solution of Plane Poiseuille Flow Within Burnett Hydrodynamics
,”
Microfluid. Nanofluid.
,
16
(
1–2
), pp.
403
412
.10.1007/s10404-013-1224-7
119.
Yadav
,
U.
, and
Agrawal
,
A.
,
2021
, “
Analysis of Burnett Stresses and Entropy Generation for Pressure-Driven Plane Poiseuille Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
032102
.10.1115/1.4048969
120.
Arkilic
,
E.
,
Schmidt
,
M.
, and
Breuer
,
K.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
167
178
.10.1109/84.585795
121.
Rath
,
A.
,
Singh
,
N.
, and
Agrawal
,
A.
,
2018
, “
A Perturbation-Based Solution of Burnett Equations for Gaseous Flow in a Long Microchannel
,”
J. Fluid Mech.
,
844
, pp.
1038
1051
.10.1017/jfm.2018.233
122.
Rath
,
A.
,
Yadav
,
U.
, and
Agrawal
,
A.
,
2021
, “
Analytical Solution of the Burnett Equations for Gaseous Flow in a Long Microchannel
,”
J. Fluid Mech.
,
912
, p.
A53
.10.1017/jfm.2020.1166
You do not currently have access to this content.