Abstract

The jet fire caused by the leakage of combustible materials is one of the biggest threats to the safety of chemical plants. Thermal radiation of the jet fire brings severe damage to nearby facilities and people's health. To evaluate the damage of jet fires, a precise model for the calculation of thermal radiation is indispensable. Classical thermal radiation models of jet fires either have a lower prediction accuracy or a higher computation complexity. To overcome such deficiencies, this paper proposes a novel segmented line heat source (SLHS) model for jet fires. Because the length of the jet fire is often much larger than the width, the jet fire is viewed as a line heat source, with all the heat radiated from the centerline of the jet fire. The jet fire is divided into three segments along the flame length according to the temperature distribution and thermal radiation characteristics of the flame. Based on the SLHS model, three types of thermal radiation models called cone-cylinder-cone, ellipsoid-cylinder-ellipsoid, and ellipsoid-cylinder-cone models are built for computing the radiant heat flux distribution around the jet fire. The effectiveness and advantages of the proposed models are illustrated with the experimental data and a numerical simulation.

References

1.
Woodward
,
J. L.
, and
Mudan
,
K. S.
,
1991
, “
Liquid and Gas Discharge Rates Through Holes in Process Vessels
,”
J. Loss Prev. Process Ind.
,
4
(
3
), pp.
161
165
.10.1016/0950-4230(91)80031-O
2.
Hawthorne
,
W. R.
,
Weddell
,
D. S.
, and
Hottel
,
H. C.
,
1948
, “
Mixing and Combustion in Turbulent Gas Jets
,”
Symp. Combust. Flame Explos. Phenom.
,
3
(
1
), pp.
266
288
.10.1016/S1062-2896(49)80035-3
3.
Hottel
,
H. C.
, and
Hawthorne
,
W. R.
,
1948
, “
Diffusion in Laminar Flame Jets
,”
Symp. Combust. Flame Explos. Phenom.
,
3
(
1
), pp.
254
266
.10.1016/S1062-2896(49)80034-1
4.
Becker
,
H. A.
, and
Yamazaki
,
S.
,
1978
, “
Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames
,”
Combust. Flame
,
33
, pp.
123
149
.10.1016/0010-2180(78)90055-X
5.
Kiran
,
D. Y.
, and
Mishra
,
D. P.
,
2007
, “
Experimental Studies of Flame Stability and Emission Characteristics of Simple LPG Jet Diffusion Flame
,”
Fuel
,
86
(
10–11
), pp.
1545
1551
.10.1016/j.fuel.2006.10.027
6.
Santos
,
A.
, and
Costa
,
M.
,
2005
, “
Reexamination of the Scaling Laws for NOx Emissions From Hydrocarbon Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
142
(
1–2
), pp.
160
169
.10.1016/j.combustflame.2005.03.004
7.
Heskestad
,
G.
,
1998
, “
On Q* and the Dynamics of Turbulent Diffusion Flames
,”
Fire Saf. J.
,
30
(
3
), pp.
215
227
.10.1016/S0379-7112(97)00035-0
8.
Kalghatgi
,
G. T.
,
1983
, “
The Visible Shape and Size of a Turbulent Hydrocarbon Jet Diffusion Flame in a Cross-Wind
,”
Combust. Flame
,
52
, pp.
91
106
.10.1016/0010-2180(83)90123-2
9.
Hankinson
,
G.
, and
Lowesmith
,
B. J.
,
2012
, “
A Consideration of Methods of Determining the Radiative Characteristics of Jet Fires
,”
Combust. Flame
,
159
(
3
), pp.
1165
1177
.10.1016/j.combustflame.2011.09.004
10.
Lowesmith
,
B. J.
, and
Hankinson
,
G.
,
2012
, “
Large Scale High Pressure Jet Fires Involving Natural Gas and Natural Gas/Hydrogen Mixtures
,”
Process Saf. Environ. Prot.
,
90
(
2
), pp.
108
120
.10.1016/j.psep.2011.08.009
11.
Schuller
,
R. B.
,
Hustad
,
J.
,
Nylund
,
J.
, and
Sonju
,
O. K.
,
1983
, “
Effect of Nozzle Geometry on Burning Subsonic Hydrocarbon Jets
,”
ASME/AIChE 21st National Heat Transfer Conference
, Seattle, WA.https://www.osti.gov/biblio/5289812
12.
Zhou
,
K.
, and
Jiang
,
J.
,
2016
, “
Thermal Radiation From Vertical Turbulent Jet Flame: Line Source Model
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
4
), p.
042701
.10.1115/1.4032151
13.
Palacios
,
A.
,
Muñoz
,
M.
,
Darbra
,
R. M.
, and
Casal
,
J.
,
2012
, “
Thermal Radiation From Vertical Jet Fires
,”
Fire Saf. J.
,
51
, pp.
93
101
.10.1016/j.firesaf.2012.03.006
14.
Gomez-Mares
,
M.
,
Muñoz
,
M.
, and
Casal
,
J.
,
2010
, “
Radiant Heat From Propane Jet Fires
,”
Exp. Therm. Fluid Sci.
,
34
(
3
), pp.
323
329
.10.1016/j.expthermflusci.2009.10.024
15.
Bosch
,
C. J. H.
, and
Weterings
,
R.
,
1997
,
Methods for the Calculation of Physical Effects
,
Academy Chicago Publishers
,
The Hague, The Netherlands
(the Yellow Book).
16.
Palacios
,
A.
,
Muñoz
,
M.
, and
Casal
,
J.
,
2009
, “
Jet Fires: An Experimental Study of the Main Geometrical Features of the Flame in Subsonic and Sonic Regimes
,”
AIChE J.
,
55
(
1
), pp.
256
263
.10.1002/aic.11653
17.
Schefer
,
R. W.
,
Houf
,
W.
,
Bourne
,
B.
, and
Colton
,
J.
,
2006
, “
Spatial and Radiative Properties of an Open-Flame Hydrogen Plume
,”
Int. J. Hydrogen Energy
,
31
(
10
), pp.
1332
1340
.10.1016/j.ijhydene.2005.11.020
18.
Sonju
,
O. K.
, and
Hustad
,
J.
,
1984
, “
An Experimental Study of Turbulent Jet Diffusion Flames
,”
Norwegian Maritime Res.
,
4
, pp.
2
11
.
19.
Sugawa
,
O.
, and
Sakai
,
K.
,
1997
, “
Flame Length and Width Produced by Ejected Propane Gas Fuel From a Pipe
,”
Fire Sci. Technol.
,
17
(
1
), pp.
55
63
.10.3210/fst.17.55
20.
Mogi
,
T.
, and
Horiguchi
,
S.
,
2009
, “
Experimental Study on the Hazards of High-Pressure Hydrogen Jet Diffusion Flames
,”
J. Loss Prev. Process Ind.
,
22
(
1
), pp.
45
51
.10.1016/j.jlp.2008.08.006
21.
Imamura
,
T.
,
Hamada
,
S.
,
Mogi
,
T.
,
Wada
,
Y.
,
Horiguchi
,
S.
,
Miyake
,
A.
, and
Ogawa
,
T.
,
2008
, “
Experimental Investigation on the Thermal Properties of Hydrogen Jet Flame and Hot Currents in the Downstream Region
,”
Int. J. Hydrogen Energy
,
33
(
13
), pp.
3426
3435
.10.1016/j.ijhydene.2008.03.063
22.
Palacio
,
A.
, and
Casal
,
J.
,
2011
, “
Assessment of the Shape of Vertical Jet Fires
,”
Fuel
,
90
(
2
), pp.
824
833
.10.1016/j.fuel.2010.09.048
23.
Turns
,
S. R.
, and
Myhr
,
F. H.
,
1991
, “
Oxides of Nitrogen Emissions From Turbulent Jet Flames: Part I-Fuel Effects and Flame Radiation
,”
Combust. Flame
,
87
(
3–4
), pp.
319
335
.10.1016/0010-2180(91)90116-S
24.
Gopalaswami
,
N.
,
Liu
,
Y.
,
Laboureur
,
D. M.
,
Zhang
,
B.
, and
Mannan
,
M.
,
2016
, “
Experimental Study on Propane Jet Fire Hazards: Comparison of Main Geometrical Features With Empirical Models
,”
J. Loss Prev. Process Ind.
,
41
, pp.
365
375
.10.1016/j.jlp.2016.02.003
25.
Zhang
,
B.
,
Liu
,
Y.
,
Laboureur
,
D.
, and
Mannan
,
M.
,
2015
, “
Experimental Study on Propane Jet Fire Hazards: Thermal Radiation
,”
Ind. Eng. Chem. Res.
,
54
(
37
), pp.
9251
9256
.10.1021/acs.iecr.5b02064
26.
Zhou
,
K.
,
Liu
,
N.
,
Zhang
,
L.
, and
Satoh
,
K.
,
2014
, “
Thermal Radiation From Fire Whirls: Revised Solid Flame Model
,”
Fire Technol.
,
50
(
6
), pp.
1573
1587
.10.1007/s10694-013-0360-7
27.
Zhou
,
K.
,
Liu
,
J.
, and
Jiang
,
J.
,
2016
, “
Prediction of Radiant Heat Flux From Horizontal Propane Jet Fire
,”
Appl. Therm. Eng.
,
106
, pp.
634
639
.10.1016/j.applthermaleng.2016.06.063
28.
Beyler
,
C. L.
,
2016
, “
Fire Hazard Calculations for Large, Open Hydrocarbon Fires
,”
SFPE Handbook of Fire Protection Engineering
,
M. J.
Hurley
, ed.,
Springer
,
New York
, pp.
2591
2663
.
You do not currently have access to this content.