Abstract

Electric vehicles (EVs) have grown in popularity in recent years due to their environmental friendliness and the potential scarcity of fossil fuels. Lithium-ion batteries (LIBs) are commonly utilized in EVs and hybrid electric vehicles (HEVs). They have a high specific charge, a high density of power, and a long life. A revolutionary design of a trapezoidal battery pack with a liquid cooling system based on composite phase change material (CPCM) is proposed in this research. The phase change material (PCM) is paraffin wax (PA), and the high thermal conductivity particles are graphite powder (GSP). CPCM is made in three different compositions and is filled in between cells with a 5 mm gap. Because PCM has a low thermal conductivity, it is filled with GSP, a high thermal conductive particle. The thermal conductivity is increased from 0.25 to 2.7 W/m K, which increases the heat transfer rate significantly. By adjusting different coolant flow velocities at varied discharge rates, the performance of the battery pack is examined. During the experiment, the discharge rates of 1 C, 2 C, and 3 C were used at a 28–30 °C ambient temperature. According to the findings, a trapezoidal battery pack based on CPCM exhibits a more efficient rate of heat transfer than a battery pack based on PCM. Moreover, BTMS with a liquid cooling system achieves consistent temperature distribution, with the maximum temperature remaining within the ideal range of below 45 °C under all test conditions.

References

1.
Zhao
,
G.
,
Wang
,
X.
,
Negnevitsky
,
M.
, and
Zhang
,
H.
,
2021
, “
A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles
,”
J. Power Sources
,
501
, p.
230001
.10.1016/j.jpowsour.2021.230001
2.
Wang
,
Y.
,
Yu
,
Y.
,
Jing
,
Z.
,
Wang
,
C.
,
Zhou
,
G.
, and
Zhao
,
W.
,
2021
, “
Thermal Performance of Lithium-Ion Batteries Applying Forced Air Cooling With an Improved Aluminium Foam Heat Sink Design
,”
Int. J. Heat Mass Transfer
,
167
, p.
120827
.10.1016/j.ijheatmasstransfer.2020.120827
3.
Singh
,
L. K.
,
Mishra
,
G.
,
Sharma
,
A. K.
, and
Gupta
,
A. K.
,
2021
, “
A Numerical Study on Thermal Management of a Lithium-Ion Battery Module Via Forced-Convective Air Cooling
,”
Int. J. Refrig.
,
131
, pp.
218
234
.10.1016/j.ijrefrig.2021.07.031
4.
Wu
,
W.
,
Yang
,
X.
,
Zhang
,
G.
,
Ke
,
X.
,
Wang
,
Z.
,
Situ
,
W.
,
Li
,
X.
, and
Zhang
,
J.
,
2016
, “
An Experimental Study of Thermal Management System Using Copper Mesh-Enhanced Composite Phase Change Materials for Power Battery Pack
,”
Energy
,
113
, pp.
909
916
.10.1016/j.energy.2016.07.119
5.
Chen
,
K.
,
Wu
,
W.
,
Yuan
,
F.
,
Chen
,
L.
, and
Wang
,
S.
,
2019
, “
Cooling Efficiency Improvement of Air-Cooled Battery Thermal Management System Through Designing the Flow Pattern
,”
Energy
,
167
, pp.
781
790
.10.1016/j.energy.2018.11.011
6.
Chen
,
K.
,
Chen
,
Y.
,
She
,
Y.
,
Song
,
M.
,
Wang
,
S.
, and
Chen
,
L.
,
2020
, “
Construction of Effective Symmetrical Air-Cooled System for Battery Thermal Management
,”
Appl. Therm. Eng.
,
166
, p.
114679
.10.1016/j.applthermaleng.2019.114679
7.
Akbarzadeh
,
M.
,
Kalogiannis
,
T.
,
Jaguemont
,
J.
,
Jin
,
L.
,
Behi
,
H.
,
Karimi
,
D.
,
Beheshti
,
H.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Comparative Study Between Air Cooling and Liquid Cooling Thermal Management Systems for a High-Energy Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
198
, p.
117503
.10.1016/j.applthermaleng.2021.117503
8.
Tan
,
X.
,
Lyu
,
P.
,
Fan
,
Y.
,
Rao
,
J.
, and
Ouyang
,
K.
,
2021
, “
Numerical Investigation of the Direct Liquid Cooling of a Fast-Charging Lithium-Ion Battery Pack in Hydrofluoroether
,”
Appl. Therm. Eng.
,
196
, p.
117279
.10.1016/j.applthermaleng.2021.117279
9.
Song
,
L.
,
Zhang
,
H.
, and
Yang
,
C.
,
2019
, “
Thermal Analysis of Conjugated Cooling Configurations Using Phase Change Material and Liquid Cooling Techniques for a Battery Module
,”
Int. J. Heat Mass Transfer
,
133
, pp.
827
841
.10.1016/j.ijheatmasstransfer.2018.12.157
10.
Bai
,
F.
,
Chen
,
M.
,
Song
,
W.
,
Feng
,
Z.
,
Li
,
Y.
, and
Ding
,
Y.
,
2017
, “
Thermal Management Performances of PCM/Water Cooling-Plate Using for Lithium-Ion Battery Module Based on Non-Uniform Internal Heat Source
,”
Appl. Therm. Eng.
,
126
, pp.
17
27
.10.1016/j.applthermaleng.2017.07.141
11.
Ren
,
R.
,
Zhao
,
Y.
,
Diao
,
Y.
,
Liang
,
L.
, and
Jing
,
H.
,
2021
, “
Active Air-Cooling Thermal Management System Based on U-Shaped Micro Heat Pipe Array for Lithium-Ion Battery
,”
J. Power Sources
,
507
, p.
230314
.10.1016/j.jpowsour.2021.230314
12.
Behi
,
H.
,
Behi
,
M.
,
Karimi
,
D.
,
Jaguemont
,
J.
,
Ghanbarpour
,
M.
,
Behnia
,
M.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2021
, “
Heat Pipe Air-Cooled Thermal Management System for Lithium-Ion Batteries: High Power Applications
,”
Appl. Therm. Eng.
,
183
, p.
116240
.10.1016/j.applthermaleng.2020.116240
13.
Qu
,
J.
,
Zuo
,
A.
,
Liu
,
H.
,
Zhao
,
J.
, and
Rao
,
Z.
,
2021
, “
Three-Dimensional Oscillating Heat Pipes With Novel Structure for Latent Heat Thermal Energy Storage Application
,”
Appl. Therm. Eng.
,
187
, p.
116574
.10.1016/j.applthermaleng.2021.116574
14.
Wang
,
J.
,
Gan
,
Y.
,
Liang
,
J.
,
Tan
,
M.
, and
Li
,
Y.
,
2019
, “
Sensitivity Analysis of Factors Influencing a Heat Pipe-Based Thermal Management System for a Battery Module With Cylindrical Cells
,”
Appl. Therm. Eng.
,
151
, pp.
475
485
.10.1016/j.applthermaleng.2019.02.036
15.
Zhao
,
J.
,
Rao
,
Z.
,
Liu
,
C.
, and
Li
,
Y.
,
2016
, “
Experiment Study of Oscillating Heat Pipe and Phase Change Materials Coupled for Thermal Energy Storage and Thermal Management
,”
Int. J. Heat Mass Transfer
,
99
, pp.
252
260
.10.1016/j.ijheatmasstransfer.2016.03.108
16.
Park
,
S.
,
Jang
,
D. S.
,
Lee
,
D.
,
Hong
,
S. H.
, and
Kim
,
Y.
,
2019
, “
Simulation on Cooling Performance Characteristics of a Refrigerant-Cooled Active Thermal Management System for Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
135
, pp.
131
141
.10.1016/j.ijheatmasstransfer.2019.01.109
17.
Weng
,
J.
,
Yang
,
X.
,
Zhang
,
G.
,
Ouyang
,
D.
,
Chen
,
M.
, and
Wang
,
J.
,
2019
, “
Optimization of the Detailed Factors in a Phase-Change-Material Module for Battery Thermal Management
,”
Int. J. Heat Mass Transfer
,
138
, pp.
126
134
.10.1016/j.ijheatmasstransfer.2019.04.050
18.
Singh
,
R.
,
Sadeghi
,
S.
, and
Shabani
,
B.
,
2018
, “
Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications
,”
Energies
,
12
(
1
), p.
75
.10.3390/en12010075
19.
Zeng
,
J.
,
Cao
,
Z.
,
Yang
,
D.
,
Sun
,
L.
, and
Zhang
,
L.
,
2010
, “
Thermal Conductivity Enhancement of Ag Nanowires on an Organic Phase Change Material
,”
J. Therm. Anal. Calorim.
,
101
(
1
), pp.
385
389
.10.1007/s10973-009-0472-y
20.
Dinesh
,
B. V. S.
, and
Bhattacharya
,
A.
,
2019
, “
Effect of Foam Geometry on Heat Absorption Characteristics of PCM-Metal Foam Composite Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
134
, pp.
866
883
.10.1016/j.ijheatmasstransfer.2019.01.095
21.
Masthan Vali
,
P. S. N.
, and
Murali
,
G.
,
2023
, “
Simulation on the Thermal Management of Electrical Vehicle Battery Pack With Different Cooling Methods
,”
E3S Web Conf.
,
391
, p.
01096
.10.1051/e3sconf/202339101096
22.
Wang
,
M.
,
Teng
,
S.
,
Xi
,
H.
, and
Li
,
Y.
,
2021
, “
Cooling Performance Optimization of Air-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
195
, p.
117242
.10.1016/j.applthermaleng.2021.117242
23.
Yang
,
C.
,
Xi
,
H.
, and
Wang
,
M.
,
2023
, “
Structure Optimization of Air-Cooling Battery Thermal Management System Based on Lithium-Ion Battery
,”
J. Energy Storage
,
59
, p.
106538
.10.1016/j.est.2022.106538
24.
Peng
,
X.
,
Cui
,
X.
,
Liao
,
X.
, and
Garg
,
A.
,
2020
, “
A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack
,”
Energies
,
13
(
11
), p.
2956
.10.3390/en13112956
25.
Bai
,
F. F.
,
Chen
,
M. B.
,
Song
,
W. J.
,
Li
,
Y.
,
Feng
,
Z. P.
, and
Li
,
Y.
,
2019
, “
Thermal Performance of Pouch Lithium-Ion Battery Module Cooled by Phase Change Materials
,”
Energy Procedia
,
158
, pp.
3682
3689
.10.1016/j.egypro.2019.01.891
26.
Angani
,
A.
,
Kim
,
E.
, and
Shin
,
K.
,
2020
, “
Improvement of Thermal Performance of Electric Vehicle Battery Pack With Phase-Change Material
,”
Sens. Mater.
,
32
(
5
), pp.
1609
1622
.10.18494/SAM.2020.2695
27.
Kalkan
,
O.
,
Celen
,
A.
,
Bakirci
,
K.
, and
Dalkilic
,
A. S.
,
2021
, “
Experimental Investigation of Thermal Performance of Novel Cold Plate Design Used in a Li-Ion Pouch-Type Battery
,”
Appl. Therm. Eng.
,
191
, p.
116885
.10.1016/j.applthermaleng.2021.116885
28.
Barsotti
,
D. L.
, and
Boetcher
,
S.
,
2014
, “
Novel Battery Cold Plate Design for Increased Passive Cooling
,”
SAE
Paper No. 2014-01-1919.10.4271/2014-01-1919
29.
Huang
,
Y. H.
,
Cheng
,
W. L.
, and
Zhao
,
R.
,
2019
, “
Thermal Management of Li-Ion Battery Pack With the Application of Flexible Form-Stable Composite Phase Change Materials
,”
Energy Convers. Manag.
,
182
, pp.
9
20
.10.1016/j.enconman.2018.12.064
30.
Wang
,
X.
,
Xie
,
Y.
,
Day
,
R.
,
Wu
,
H.
,
Hu
,
Z.
,
Zhu
,
J.
, and
Wen
,
D.
,
2018
, “
Performance Analysis of a Novel Thermal Management System With Composite Phase Change Material for a Lithium-Ion Battery Pack
,”
Energy
,
156
, pp.
154
168
.10.1016/j.energy.2018.05.104
31.
Murali
,
G.
,
Sravya
,
G. S.
,
Jaya
,
J.
, and
Vamsi
,
V. N.
,
2021
, “
A Review on Hybrid Thermal Management of Battery Packs and It's Cooling Performance by Enhanced PCM
,”
Ren. Sustain. Energy. Rev.
,
150
, p.
111513
.10.1016/j.rser.2021.111513
32.
Murugan
,
M.
,
Saravanan
,
A.
,
Elumalai
,
P. V.
,
Murali
,
G.
,
Dhineshbabu
,
N. R.
,
Kumar
,
P.
, and
Afzal
,
A.
,
2022
, “
Thermal Management System of Lithium-Ion Battery Packs for Electric Vehicles: An Insight Based on Bibliometric Study
,”
J. Energy Storage
,
52
, p.
104723
.10.1016/j.est.2022.104723
33.
Cao
,
L.
,
Xia
,
G.
,
Li
,
T.
, and
Wang
,
J.
,
2018
, “
Thermal Characteristics of Battery Module With Trapezoidal Structure
,”
Numeri. Heat Transfer Part A: Appl.
,
74
(
11
), pp.
1701
1714
.10.1080/10407782.2018.1517553
34.
Wang
,
Z.
,
Du
,
C.
,
Qi
,
R.
, and
Wang
,
Y.
,
2022
, “
Experimental Study on Thermal Management of Lithium-Ion Battery With Graphite Powder Based Composite Phase Change Materials Covering the Whole Climatic Range
,”
Appl. Therm. Eng.
,
216
, p.
119072
.10.1016/j.applthermaleng.2022.119072
35.
Shojaeefard
,
M. H.
,
Ranjbaran
,
Y. S.
,
Lotfi
,
M.
,
Bidgoli
,
H. D.
, and
Amani
,
S.
,
2019
, “
Effect of Module Structure on the Performance of Battery Thermal Management System Based on PCM
,”
International Conference on Modern Powertrains
, Tehran, Iran, Vol.
1
, Feb.
26
27
.https://www.researchgate.net/publication/344465326_Effect_of_module_structure_on_the_performance_of_battery_thermal_management_system_based_on_PCM
You do not currently have access to this content.