Abstract

The paper presents an experimental study on the droplet size and velocity, as well as temperature distribution, of a two-fluid atomizer (dj = 1.6 mm; spray nozzle exit diameter) through optical nonintrusive interferometric particle image (IPI) and particle image velocimetry (PIV) measurements with five different air–liquid ratios (Rs) at three spray heights with three target-plate initial temperatures. Cold flow visualization was made for the spray height of 50 mm at 25 °C. The Saunter-mean diameter (d32) was measured at the target temperature of 25 °C without heating and found to be in the range of 34.22 μm to 42.62 μm in terms of a correlation with WedjRedj. The measured impact velocity at the spray height of 50 mm was of 10 m/s to 30 m/s with three different initial target temperatures. It was found that the impact velocity displayed a strong function of the initial temperature. Furthermore, both the cooling curve and transient boiling curve were obtained with the identified cooling/boiling parameters of the cooling rate, critical heat flux (CHF), Leidenfrost temperature (LFT), as well as the onset of nucleate boiling (ONB). The best cooling performance was found at R = 0.242 for a spray height of 50 mm with the corresponding cooling rate of −19.1 °C/s, CHF of 486 W/cm2, and heat transfer coefficient (HTC) of 2.85 W/cm2K.

References

1.
Lefebvre
,
A. H.
,
1992
, “
Twin-Fluid Atomization: Factors Influencing Mean Drop Size
,”
Atomization Sprays
,
2
(
2
), pp.
101
119
.10.1615/AtomizSpr.v2.i2.30
2.
Marmottant
,
P.
, and
Villermaux
,
E.
,
2004
, “
On Spray Formation
,”
J. Fluid Mech.
,
498
, pp.
73
111
.10.1017/S0022112003006529
3.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
4.
Hsieh
,
S.-S.
, and
Tien
,
C.-H.
,
2007
, “
R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
502
512
.10.1016/j.ijheatmasstransfer.2006.07.023
5.
Cheng
,
W.-L.
,
Zhang
,
W.-W.
,
Chen
,
H.
, and
Hu
,
L.
,
2016
, “
Spray Cooling and Flash Evaporation Cooling: The Current Development and Application
,”
Renew. Sust. Energy Rev.
,
55
, pp.
614
628
.10.1016/j.rser.2015.11.014
6.
Hsieh
,
S.-S.
,
Yeh
,
Y.-F.
, and
Li
,
Y.-F.
,
2018
, “
Microspray Flow/Thermal Characteristics Via a Micro-Piezoelectric Atomizer With Single and Multiple Arrays of Micronozzles
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
96
107
.10.1016/j.expthermflusci.2017.12.023
7.
Wang
,
Y.
,
Liu
,
M.
,
Liu
,
D.
,
Xu
,
K.
, and
Chen
,
Y.
,
2010
, “
Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performance in Non-Boiling Region
,”
Exp. Therm. Fluid Sci.
,
34
(
7
), pp.
933
942
.10.1016/j.expthermflusci.2010.02.010
8.
Shafaee
,
M.
,
Banitabaei
,
S. A.
,
Ashjaee
,
M.
, and
Esfahanian
,
V.
,
2011
, “
Effect of Flow Conditions on Spray Cone Angle of a Two Fluid Atomizer
,”
J. Mech. Sci. Technol.
,
25
(
2
), pp.
365
369
.10.1007/s12206-010-1215-5
9.
Li
,
Z.
,
Wu
,
Y.
,
Cai
,
C.
,
Zhang
,
H.
,
Gong
,
Y.
,
Takeno
,
K.
,
Hashiguchi
,
K.
, and
Lu
,
J.
,
2012
, “
Mixing and Atomization Characteristics in an Internal-Mixing Twin-Fluid Atomizer
,”
Fuel
,
97
, pp.
306
314
.10.1016/j.fuel.2012.03.006
10.
Krawczyk
,
P.
,
Badyda
,
K.
, and
Młynarz
,
S.
,
2016
, “
Effect of the Air to Water Ratio on the Performance of Internal Mixing Two-Fluid Atomizer
,”
Chem. Process Eng.
,
37
(
4
), pp.
461
471
.10.1515/cpe-2016-0038
11.
Xia
,
Y.
,
Khezzar
,
L.
,
Alshehhi
,
M.
, and
Hardalupas
,
Y.
,
2017
, “
Droplet Size and Velocity Characteristics of Water-Air Impinging Jet Atomizer
,”
Int. J. Multiphase Flow
,
94
, pp.
31
43
.10.1016/j.ijmultiphaseflow.2017.04.014
12.
Poozesh
,
S.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Marsac
,
P. J.
,
2018
, “
Near-Field Dynamics of High-Speed Spray Dryer Coannular Two Fluid Nozzle: Effects of Operational Conditions and Formulations
,”
Powder Technol.
,
333
, pp.
439
448
.10.1016/j.powtec.2018.04.064
13.
Hsieh
,
S.-S.
,
Luo
,
S.-Y.
,
Lee
,
R.-Y.
, and
Liu
,
H.-H.
,
2015
, “
Spray Cooling Heat Transfer on Microstructured Thin Film Enhanced Surfaces
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
123
134
.10.1016/j.expthermflusci.2015.04.014
14.
Strob
,
R.
,
Babaria
,
T.
,
Rodeck
,
M.
,
Schaldach
,
G.
,
Walzel
,
P.
, and
Thommes
,
M.
,
2020
, “
Evaluation of Spray Impact on a Sphere With a Two-Fluid Nozzle
,”
J. Aerosol Sci.
,
140
, p.
105483
.10.1016/j.jaerosci.2019.105483
15.
Chen
,
B.
,
Gao
,
D.
,
Li
,
Y.
,
Chen
,
C.
,
Wang
,
Z.
,
Zhong
,
Q.
,
Sun
,
P.
,
Wang
,
Z.
,
Wu
,
S.
, and
Zhao
,
J.
,
2021
, “
Experimental Analysis of Spray Behavior and Lubrication Performance Under Twin-Fluid Atomization
,”
J. Manuf. Processes.
,
61
, pp.
561
573
.10.1016/j.jmapro.2020.11.029
16.
Liu
,
P.
,
Kandasamy
,
R.
,
Yao
,
J.
,
Wong
,
T.-N.
, and
Toh
,
K.-C.
,
2023
, “
Dynamic Performance Analysis and Thermal Modelling of a Novel Two-Phase Spray Cooled Rack System for Data Center Cooling
,”
Energy
,
269
, p.
126835
.10.1016/j.energy.2023.126835
17.
Muthukrishnan
,
S.
,
Tan
,
X.
, and
Srinivasan
,
V.
,
2023
, “
High-Efficiency Spray Cooling of Rough Surfaces With Gas-Assist Atomization
,”
Appl. Therm. Eng.
,
221
, p.
119764
.10.1016/j.applthermaleng.2022.119764
18.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling – Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
19.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
20.
Estes
,
K. A.
, and
Mudawar
,
I.
,
1995
, “
Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
2985
2996
.10.1016/0017-9310(95)00046-C
21.
Wang
,
J.-X.
,
Li
,
Y.-Z.
,
Zhang
,
H.-S.
,
Wang
,
S.-N.
,
Mao
,
Y.-F.
,
Zhang
,
Y.-N.
, and
Liang
,
Y.-H.
,
2015
, “
Investigation of a Spray Cooling System With Two Nozzles for Space Application
,”
Appl. Therm. Eng.
,
89
, pp.
115
124
.10.1016/j.applthermaleng.2015.05.082
22.
Hsieh
,
S.-S.
,
Chen
,
J.-W.
, and
Yeh
,
Y.-F.
,
2015
, “
Optical Flow and Thermal Measurement for Spray Cooling
,”
Int. J. Heat Mass Transfer
,
87
, pp.
248
253
.10.1016/j.ijheatmasstransfer.2015.04.005
23.
Puschmann
,
F.
, and
Specht
,
E.
,
2004
, “
Transient Measurement of Heat Transfer in Metal Quenching With Atomized Sprays
,”
Exp. Therm. Fluid Sci.
,
28
(
6
), pp.
607
615
.10.1016/j.expthermflusci.2003.09.004
24.
Cheng
,
W.-L.
,
Han
,
F.-Y.
,
Liu
,
Q.-N.
,
Zhao
,
R.
, and
Fan
,
H.-I.
,
2011
, “
Experimental and Theoretical Investigation of Surface Temperature Non-Uniformity of Spray Cooling
,”
Energy
,
36
(
1
), pp.
249
257
.10.1016/j.energy.2010.10.044
25.
Zhang
,
X.
,
Wen
,
Z.
,
Dou
,
R.
,
Zhou
,
G.
, and
Zhang
,
F.
,
2014
, “
Experimental Study of the Air-Atomized Spray Cooling of High-Temperature Metal
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
43
55
.10.1016/j.applthermaleng.2014.06.026
You do not currently have access to this content.