Abstract

Natural convection inside horizontal concentric annular cavities is dealt with through the generalized integral transform technique (GITT), offering a hybrid numerical-analytical solution of the continuity, Navier–Stokes, and energy equations in cylindrical coordinates. The flow is in steady-state, laminar regime, two-dimensional, buoyancy-induced, and the governing equations are written in the streamfunction-only formulation. Two strategies of integral transformation are adopted to verify the best computational performance, namely, the usual one with eigenvalue problems for both streamfunction and temperature defined in the radial variable, and a novel alternative with eigenvalue problems defined in the azimuthal angular coordinate. First, the eigenfunction expansions convergence behavior is analyzed to critically compare the two integral transform solution strategies. Then, test cases for different aspect ratios and Rayleigh numbers are validated with experimental data from the classical work of Kuehn and Goldstein. A maximum relative deviation of 5% is found comparing the GITT results for the average Nusselt number against the experimental data, while an 8% maximum relative deviation is found comparing against an empirical correlation by the same authors. It is concluded that the GITT solution with the eigenvalue problem in the angular coordinate yields better convergence rates than the more usual eigenfunction expansion in the radial variable. This is due to the originally homogeneous boundary conditions in the angular direction, which do not require filtering for convergence enhancement, as opposed to the required filter in the radial direction that introduces a source term in the filtered equation for the streamfunction.

References

1.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
,
74
(
4
), pp.
695
719
.10.1017/S0022112076002012
2.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1978
, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
4
), pp.
635
640
.10.1115/1.3450869
3.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1980
, “
A Parametric Study of Prandtl Number and Diameter Ratio Effects on Natural Convection Heat Transfer in Horizontal Cylindrical Annuli
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
102
(
4
), pp.
768
770
.10.1115/1.3244388
4.
Farouk
,
B.
, and
Güçeri
,
S. I.
,
1982
, “
Laminar and Turbulent Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
4
), pp.
631
636
.10.1115/1.3245178
5.
Tsui
,
Y. T.
, and
Tremblay
,
B.
,
1984
, “
On Transient Natural Convection Heat Transfer in the Annulus Between Concentric, Horizontal Cylinders With Isothermal Surfaces
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
103
111
.10.1016/0017-9310(84)90242-4
6.
Rao
,
Y.
,
Miki
,
Y.
,
Fukuda
,
K.
,
Takata
,
Y.
, and
Hasegawa
,
S.
,
1985
, “
Flow Patterns of Natural Convection in Horizontal Cylindrical Annuli
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
705
714
.10.1016/0017-9310(85)90193-0
7.
Mahony
,
D. N.
,
Kumar
,
R.
, and
Bishop
,
E. H.
,
1986
, “
Numerical Investigation of Variable Property Effects on Laminar Natural Convection of Gases Between Two Horizontal Isothermal Concentric Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
4
), pp.
783
789
.10.1115/1.3247013
8.
Castrejon
,
A.
, and
Spalding
,
D. B.
,
1988
, “
An Experimental and Theoretical Study of Transient Free-Convection Flow Between Horizontal Concentric Cylinders
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
273
284
.10.1016/0017-9310(88)90010-5
9.
Guj
,
G.
,
Iannetta
,
S.
, and
Moretti
,
G.
,
1992
, “
Experimental Analysis of Thermal Fields in Horizontally Eccentric Cylindrical Annuli
,”
Exp. Fluids
,
12
(
6
), pp.
385
393
.10.1007/BF00193885
10.
Hamad
,
F. A.
, and
Khan
,
M. K.
,
1998
, “
Natural Convection Heat Transfer in Horizontal and Inclined Annuli of Different Diameter Ratios
,”
Energy Convers. Mgmt.
,
39
(
8
), pp.
797
807
.10.1016/S0196-8904(97)10010-3
11.
Shu
,
C.
,
1999
, “
Application of Differential Quadrature Method to Simulate Natural Convection in a Concentric Annulus
,”
Int. J. Numer. Meth. Fluids
,
30
(
8
), pp.
977
993
.10.1002/(SICI)1097-0363(19990830)30:8<977::AID-FLD873>3.0.CO;2-J
12.
Yeh
,
C. L.
,
2002
, “
Numerical Investigation of the Three-Dimensional Natural Convection Inside Horizontal Concentric Annulus With Specified Wall Temperature or Heat Flux
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
775
784
.10.1016/S0017-9310(01)00191-0
13.
Roschina
,
N. A.
,
Uvarov
,
A. V.
, and
Osipov
,
A. I.
,
2005
, “
Natural Convection in an Annulus Between Coaxial Horizontal Cylinders With Internal Heat Generation
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4518
4525
.10.1016/j.ijheatmasstransfer.2005.05.035
14.
Padilla
,
E. L. M.
,
Campregher
,
R.
, and
Silveira-Neto
,
A.
,
2006
, “
Numerical Analysis of the Natural Convection in Horizontal Annuli at Low and Moderate Ra
,”
Therm. Eng.
,
5
(
2
), pp.
58
65
.10.5380/reterm.v5i2.61852
15.
Nada
,
S. A.
,
2008
, “
Experimental Investigation of Natural Convection Heat Transfer in Horizontal and Inclined Annular Fluid Layers
,”
Heat Mass Transfer
,
44
(
8
), pp.
929
936
.10.1007/s00231-007-0337-5
16.
Abu-Nada
,
E.
,
Masoud
,
Z.
, and
Hijazi
,
A.
,
2008
, “
Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids
,”
Int. Comm. Heat Mass Transfer
,
35
(
5
), pp.
657
665
.10.1016/j.icheatmasstransfer.2007.11.004
17.
Atayılmaz
,
S. Ö.
,
2011
, “
Experimental and Numerical Study of Natural Convection Heat Transfer From Horizontal Concentric Cylinders
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1472
1483
.10.1016/j.ijthermalsci.2011.03.019
18.
Li
,
Y. R.
,
Yuan
,
X. F.
,
Hu
,
Y. P.
, and
Tang
,
J. W.
,
2013
, “
Experimental Research on Natural Convective Heat Transfer of Water Near Its Density Maximum in a Horizontal Annulus
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
544
549
.10.1016/j.expthermflusci.2012.08.016
19.
Wang
,
Y.
,
Shu
,
C.
, and
Teo
,
C. J.
,
2014
, “
Thermal Lattice Boltzmann Flux Solver and Its Application for Simulation of Incompressible Thermal Flows
,”
Comput. Fluids
,
94
, pp.
98
111
.10.1016/j.compfluid.2014.02.006
20.
Patel
,
S. S.
,
Min
,
M.
,
Uga
,
K. C.
, and
Lee
,
T.
,
2014
, “
A Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Simulating Natural Convection Heat Transfer in a Horizontal Concentric Annulus
,”
Comput Fluids
,
95
, pp.
197
209
.10.1016/j.compfluid.2014.02.021
21.
Najafi
,
M.
, and
Enjilela
,
V.
,
2014
, “
Natural Convection Heat Transfer at High Rayleigh Numbers - Extended Meshless Local Petrov-Galerkin (MLPG) Primitive Variable Method
,”
Eng. Anal. Bound. Elem.
,
44
, pp.
170
184
.10.1016/j.enganabound.2014.01.022
22.
Volkov
,
K. N.
,
Emel'yanov
,
V. N.
, and
Karpenko
,
A. G.
,
2015
, “
Preconditioning of Navier-Stokes Equations in the Computation of Free Convective Flows
,”
Comput. Math. Math. Phys.
,
55
(
12
), pp.
2080
2093
.10.1134/S0965542515120167
23.
Ng
,
K. C.
,
Sheu
,
T. W. H.
, and
Hwang
,
Y. H.
,
2016
, “
Unstructured Moving Particle Pressure Mesh (UMPPM) Method for Incompressible Isothermal and Non-Isothermal Flow Computation
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
703
738
.10.1016/j.cma.2016.03.015
24.
Atayılmaz
,
ŞÖ.
,
Demir
,
H.
,
Sevindir
,
M. K.
,
Ağra
,
Ö.
,
Teke
,
İ.
, and
Dalkılıç
,
A. S.
,
2017
, “
Natural Convection Heat Transfer From Horizontal Concentric and Eccentric Cylinder Systems Cooling in the Ambient Air and Determination of Inner Cylinder Location
,”
Heat Mass Transfer
,
53
(
8
), pp.
2677
2692
.10.1007/s00231-017-2012-9
25.
Zendehbudi
,
G. R.
,
2018
, “
Combination of Projection and Galerkin Finite-Element Methods to Solve the Problem of Free Convection in Enclosures With Complex Geometries
,”
Sci. Iran. B
,
25
(
3
), pp.
1189
1196
.10.24200/sci.2017.4332
26.
Yang
,
X.
, and
Kong
,
S. C.
,
2019
, “
Numerical Study of Natural Convection in a Horizontal Concentric Annulus Using Smoothed Particle Hydrodynamics
,”
Eng. Anal. Bound. Elem.
,
102
, pp.
11
20
.10.1016/j.enganabound.2019.02.007
27.
Wang
,
Z.
,
Wei
,
Y.
, and
Qian
,
Y.
,
2020
, “
A Simple Direct Heating Thermal Immersed Boundary-Lattice Boltzmann Method for Its Application in Incompressible Flow
,”
Comput. Math. Appl.
,
80
(
6
), pp.
1633
1649
.10.1016/j.camwa.2020.08.003
28.
Huang
,
X. J.
,
Vafai
,
K.
, and
Li
,
Y. R.
,
2020
, “
Nanofluid Buoyancy-Driven Heat Transfer in Three-Dimensional Horizontal Annuli
,”
Eur. J. Mech. B/Fluids
,
82
, pp.
66
82
.10.1016/j.euromechflu.2020.02.005
29.
Al-Saif
,
A. S. J.
, and
Al-Griffi
,
T. A. J.
,
2021
, “
Analytical Simulation for Transient Natural Convection in a Horizontal Cylindrical Concentric Annulus
,”
J. Appl. Comput. Mech.
,
7
(
2
), pp.
621
637
.10.22055/JACM.2020.35278.2617
30.
Barraza
,
J. A. R.
, and
Deiterding
,
R.
,
2022
, “
A Curvilinear Lattice Boltzmann Scheme for Thermal Flows
,”
Math. Comput. Simul.
,
202
, pp.
405
420
.10.1016/j.matcom.2022.06.002
31.
Aricò
,
C.
,
Sinagra
,
M.
,
Driss
,
Z.
, and
Tucciarelli
,
T.
,
2022
, “
A New Solver for Incompressible Non-Isothermal Flows in Natural and Mixed Convection Over Unstructured Grids
,”
Appl. Math. Model.
,
103
, pp.
445
474
.10.1016/j.apm.2021.10.042
32.
Liu
,
Y. Y.
,
Yang
,
L. M.
,
Shu
,
C.
,
Zhang
,
Z. L.
, and
Yuan
,
Z. Y.
,
2022
, “
An Implicit High-Order Radial Basis Function-Based Differential Quadrature-Finite Volume Method on Unstructured Grids to Simulate Incompressible Flows With Heat Transfer
,”
J. Comput. Phys.
,
467
, p.
111461
.10.1016/j.jcp.2022.111461
33.
Abdulameer
,
Y. A.
, and
Al-Saif
,
A. J. A.
,
2023
, “
FLT-HPM for Two-Dimensional Transient Natural Convection in a Horizontal Cylindrical Concentric Annulus
,”
Power Eng. Thermophys.
,
2
(
3
), pp.
120
138
.10.56578/peet020301
34.
Zhang
,
W.
, and
Yang
,
X.
,
2023
, “
SPH Modeling of Natural Convection in Horizontal Annuli
,”
Acta Mech. Sin.
,
39
(
4
), p.
322093
.10.1007/s10409-022-22093-x
35.
Özişik
,
M. N.
, and
Murray
,
R. L.
,
1974
, “
On the Solution of Linear Diffusion Problems With Variable Boundary Condition Parameters
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
96
(
1
), pp.
48
51
.10.1115/1.3450139
36.
Mikhailov
,
M. D.
,
1975
, “
On the Solution of the Heat Equation With Time Dependent Coefficient
,”
Int. J. Heat Mass Transfer
,
18
(
2
), pp.
344
345
.10.1016/0017-9310(75)90170-2
37.
Mikhailov
,
M. D.
, and
Özisik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Dover Publications, John Wiley
,
New York
, p.
1994
.
38.
Cotta
,
R. M.
,
1986
, “
Diffusion in Media With Prescribed Moving Boundaries: Application to Metals Oxidation at High Temperatures
,”
Proceeding of the II Latin American Congress of Heat & Mass Transfer
, Vol.
1
,
São Paulo
,
Brazil
, May, pp.
502
513
.
39.
Cotta
,
R. M.
, and
Özişik
,
M. N.
,
1986
, “
Laminar Forced Convection in Ducts With Periodic Variation of Inlet Temperature
,”
Int. J. Heat Mass Transfer
,
29
(
10
), pp.
1495
1501
.10.1016/0017-9310(86)90064-5
40.
Cotta
,
R. M.
,
1990
, “
Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems
,”
Num. Heat Transfer, Part B
,
17
(
2
), pp.
217
226
.10.1080/10407799008961740
41.
Serfaty
,
R.
, and
Cotta
,
R. M.
,
1990
, “
Integral Transform Solutions of Diffusion Problems With Nonlinear Equation Coefficients
,”
Int. Comm. Heat Mass Transfer
,
17
(
6
), pp.
851
864
.10.1016/0735-1933(90)90030-N
42.
Serfaty
,
R.
, and
Cotta
,
R. M.
,
1992
, “
Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems
,”
Int. J. Num. Meth. Heat Fluid Flow
,
2
(
1
), pp.
55
62
.10.1108/eb017479
43.
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1992
, “
Integral Transform Method for Navier-Stokes Equations in Stream Function-Only Formulation
,”
Int. J. Num. Meth. Fluids
,
15
(
4
), pp.
399
409
.10.1002/fld.1650150403
44.
Baohua
,
C.
, and
Cotta
,
R. M.
,
1993
, “
Integral Transform Analysis of Natural Convection in Porous Enclosures
,”
Int. J. Num. Meth. Fluids
,
17
(
9
), pp.
787
801
.10.1002/fld.1650170904
45.
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1996
, “
Benchmark Integral Transform Results for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
25
(
5
), pp.
527
540
.10.1016/0045-7930(96)00005-9
46.
Lima
,
J. A.
,
Perez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1997
, “
Hybrid Solution of the Averaged Navier-Stokes Equations for Turbulent Flow
,”
Comput. Mech.
,
19
(
4
), pp.
297
307
.10.1007/s004660050178
47.
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
1997
, “
Integral Transform Method for the Navier-Stokes Equations in Steady Three-Dimensional Flow
,”
Proceedings of the 10th ISTP—International Symposium on Transport Phenomena
, Kyoto, Japan, Nov. 30–Dec. 3, pp.
281
287
.
48.
Pereira
,
L. M.
,
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1998
, “
Integral Transformation of the Navier-Stokes Equations in Cylindrical Geometry
,”
Comput. Mech.
,
21
(
1
), pp.
60
70
.10.1007/s004660050283
49.
Leal
,
M. A.
,
Pérez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1999
, “
Natural Convection Inside Two-Dimensional Cavities: The Integral Transform Method
,”
Comm. Num. Meth. Eng.
,
15
(
2
), pp.
113
125
.10.1002/(SICI)1099-0887(199902)15:2<113::AID-CNM228>3.0.CO;2-9
50.
Pereira
,
L. M.
,
Cotta
,
R. M.
, and
Pérez Guerrero
,
J. S.
,
2000
, “
Analysis of Laminar Forced Convection in Annular Ducts Using Integral Transforms
,”
Hybrid Meth. Eng.
,
2
(
2
), pp.
221
232
.10.1615/HybMethEng.v2.i2.70
51.
Leal
,
M. A.
,
Machado
,
H. A.
, and
Cotta
,
R. M.
,
2000
, “
Integral Transform Solutions of Transient Natural Convection in Enclosures With Variable Fluid Properties
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3977
3990
.10.1016/S0017-9310(00)00023-5
52.
Alves
,
L. S. B.
, and
Cotta
,
R. M.
,
2000
, “
Transient Natural Convection Inside Porous Cavities: Hybrid Numerical-Analytical Solution and Mixed Symbolic-Numerical Computation
,”
Num. Heat Transfer Part A Appl.
,
38
(
1
), pp.
89
110
.10.1080/10407780050134983
53.
Pérez Guerrero
,
J. S.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2000
, “
Simulation of Laminar Flow Inside Ducts of Irregular Geometry Using Integral Transforms
,”
Comput. Mech.
,
25
(
4
), pp.
413
420
.10.1007/s004660050488
54.
Ramos
,
R.
,
Perez Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
2001
, “
Stratified Flow Over a Backward Facing Step: Hybrid Solution by Integral Transforms
,”
Int. J. Num. Meth. Fluids
,
35
(
2
), pp.
173
197
.10.1002/1097-0363(20010130)35:2<173::AID-FLD88>3.0.CO;2-U
55.
Alves
,
L. S. B.
,
Cotta
,
R. M.
, and
Pontes
,
J.
,
2002
, “
Stability Analysis of Natural Convection in Porous Cavities Through Integral Transforms
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1185
1195
.10.1016/S0017-9310(01)00231-9
56.
Luz Neto
,
H.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2002
, “
Natural Convection in Three-Dimensional Porous Cavities: Integral Transform Method
,”
Int. J. Heat Mass Transfer
,
45
(
14
), pp.
3013
3032
.10.1016/S0017-9310(02)00015-7
57.
Luz Neto
,
H.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2006
, “
Integral Transform Solution for Transient Natural Convection in Three-Dimensional Porous Cavities: Aspect Ratio Effects
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4687
4695
.10.1016/j.ijheatmasstransfer.2006.04.028
58.
Matt
,
C. F. T.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2017
, “
Analysis of Magnetohydrodynamic Natural Convection in Closed Cavities Through Integral Transforms
,”
Int. J. Heat Mass Transfer
,
113
, pp.
502
513
.10.1016/j.ijheatmasstransfer.2017.05.043
59.
Lisboa
,
K. M.
,
Su
,
J.
, and
Cotta
,
R. M.
,
2018
, “
Single Domain Integral Transforms Analysis of Natural Convection in Cavities Partially Filled With Heat Generating Porous Medium
,”
Num. Heat Transfer Part A Appl.
,
74
(
3
), pp.
1068
1086
.10.1080/10407782.2018.1511141
60.
Lisboa
,
K. M.
,
Su
,
J.
, and
Cotta
,
R. M.
,
2019
, “
Vector Eigenfunction Expansion in the Integral Transform Solution of Transient Natural Convection
,”
Int. J. Num. Meth. Heat Fluid Flow
,
29
(
8
), pp.
2684
2708
.10.1108/HFF-10-2018-0543
61.
Quaresma
,
J. N. N.
,
Cruz
,
C. C. S.
,
Cagney
,
N.
,
Cotta
,
R. M.
, and
Balabani
,
S.
,
2020
, “
Effect of Mixed Convection on Laminar Vortex Breakdown in a Cylindrical Enclosure With a Rotating Bottom Plate
,”
Int. J. Therm. Sci.
,
155
, p.
106399
.10.1016/j.ijthermalsci.2020.106399
62.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
63.
Cotta
,
R. M.
,
1994
, “
Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
381
393
.10.1016/0017-9310(94)90038-8
64.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
2006
, “
Hybrid Methods and Symbolic Computations
,”
Handbook of Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds., 2nd ed.,
John Wiley
,
New York
, Chap. 16.
65.
Cotta
,
R. M.
,
Knupp
,
D. C.
, and
Quaresma
,
J. N. N.
,
2017
, “
Analytical Methods in Heat Transfer
,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, eds., Vol.
1
,
Springer International Publishing
, Berlin, pp.
61
126
, Chap. 2.
66.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
,
Knupp
,
D. C.
,
Zotin
,
J. L. Z.
,
Pontes
,
P. C.
, and
Almeida
,
A. P.
,
2018
, “
Recent Advances in Computational-Analytical Integral Transforms for Convection-Diffusion Problems
,”
Heat Mass Transfer
,
54
(
8
), pp.
2475
2496
.10.1007/s00231-017-2186-1
67.
Cotta
,
R. M.
,
Lisboa
,
K. M.
,
Curi
,
M. F.
,
Balabani
,
S.
,
Quaresma
,
J. N. N.
,
Perez-Guerrero
,
J. S.
,
Macêdo
,
E. N.
, and
Amorim
,
N. S.
,
2019
, “
A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems With Heat or Mass Transfer and Under Navier-Stokes Equations Formulations
,”
Num. Heat Transfer, Part B Fundam.
,
76
(
2
), pp.
60
87
.10.1080/10407790.2019.1642715
68.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Lisboa
,
K. M.
,
Naveira-Cotta
,
C. P.
,
Quaresma
,
J. N. N.
,
Zotin
,
J. L. Z.
, and
Miyagawa
,
H. K.
,
2020
, “
Integral Transform Benchmarks of Diffusion, Convection-Diffusion, and Conjugated Problems in Complex Domains
,”
50 Years of CFD in Engineering Sciences - A Commemorative Volume in Memory of D. Brian Spalding
,
A. K.
Runchal
, ed.,
Springer-Verlag
, Berlin, pp.
719
750
, Chap. 20.
69.
Cotta
,
R. M.
,
Lisboa
,
K. M.
,
Naveira-Cotta
,
C. P.
,
Quaresma
,
J. N. N.
,
Knupp
,
D. C.
, and
Sphaier
,
L. A.
,
2023
, “
Unified Integral Transforms With Non-Classical Eigenvalue Problems in Heat and Mass Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
1
), p.
010801
.10.1115/1.4055818
70.
Chandrasekhar
,
S.
, and
Reid
,
W. H.
,
1957
, “
On the Expansion of Functions Which Satisfy Four Boundary Conditions
,”
Proc. Natl. Acad. Sci.
,
43
(
6
), pp.
521
527
.10.1073/pnas.43.6.521
71.
Pereira
,
L. M.
,
Perez-Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
2002
, “
Free Convection Inside Horizontal Annular Concentric Channels: - Solution by Integral Transforms
,”
National Congress of Mechanical Engineering, CONEM-2002
, João Pessoa, Brazil, Paper No. CPB0348, pp.
1
10
.
72.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
73.
IMSL
,
2018
, “
Fortran Numerical Library, Version 2018
,”
Rogue Wave Software Incorporation
,
Boulder, CO
.
74.
Lima
,
G. G. C.
,
Santos
,
C. A. C.
,
Haag
,
A.
, and
Cotta
,
R. M.
,
2007
, “
Integral Transform Solution of Internal Flow Problems Based on Navier-Stokes Equations and Primitive Variables Formulation
,”
Int. J. Num. Meth. Eng.
,
69
(
3
), pp.
544
561
.10.1002/nme.1780
75.
Curi
,
M. F.
,
Cotta
,
R. M.
, and
Perez-Guerrero
,
J. S.
,
2014
, “
Alternative Integral Transforms Solution of the Transient Incompressible Navier-Stokes Equations in Primitive Variables Formulation
,”
15th Brazilian Congress of Thermal Sciences and Engineering, ENCIT 2014
, Nov. 10–13, Belém, PA, Brazil, pp.
1
10
.
You do not currently have access to this content.